Sustainability Hub

Water

As part of the Singapore Green Plan 2030, water sustainability is essential for meeting the nation’s water needs while addressing broader environmental and societal goals. Innovative solutions for water production, treatment and recycling, are pivotal in boosting water efficiency and reducing reliance on external sources. Additionally, smart water management systems and water pollution control technologies, including real-time water quality monitoring and pollution mitigation systems, help safeguard vital water resources. Optimised plant operations, combined with these innovations, empower enterprises to contribute to Singapore’s vision of water security and promote sustainable water management practices that align with national goals for resilience and environmental stewardship. 

Unlock new opportunities through co-development by leveraging cutting-edge innovations in water and wastewater treatment, as well as resource efficiency and recovery. These technological advancements can drive water sustainability in Singapore, enhance operational performance, and contribute to both water security and environmental resilience. 

By embracing sustainable water management in Singapore, businesses can play a key role in advancing national water policies. Collaborating on innovative solutions not only enhances water sustainability but also fosters a resilient ecosystem that benefits all Singaporeans.

In-Pipe Hydropower Generation
Traditional hydropower systems require large-scale infrastructure, making them expensive and location dependent. This In-Pipe Hydropower Generation System offers an innovative, cost-effective, and eco-friendly alternative that captures excess water pressure within pipelines to generate electricity. The system features multiple nozzles and a smart bypass mechanism that optimize power generation while maintaining stable water flow. It is designed to be scalable, modular, and compatible with existing municipal and industrial pipeline networks. Additionally, it can efficiently generate energy under varying flow conditions. While the system is capable of producing significantly higher power, real-world testing has demonstrated an output of up to 60 kW, helping to reduce energy costs and provide a sustainable solution for water distribution networks. The technology provider is seeking collaboration partners, including municipal and government agencies, industrial water users, agricultural and irrigation networks, and engineering and utility companies, to co-develop, test-bed, and deploy the In-Pipe Hydropower System.
Concrete Armour for Coastal Protection Structures
Coastal regions are increasingly vulnerable to shoreline erosion and infrastructure damage caused by rising sea levels, stronger waves, and frequent storm surges. Conventional concrete breakwater designs often struggle under such harsh marine conditions due to inadequate interlocking, limited adaptability to diverse coastal profiles, and high maintenance demands. This technology introduces geopolymer-based, geometrically optimized concrete armour units designed to enhance the stability, durability, and sustainability of coastal protection structures. By using fly ash–based geopolymer concrete, the technology not only reduces carbon emissions but also delivers superior interlocking performance and long-term resilience against dynamic wave forces, making it a sustainable solution for modern coastal defense. The technology owner is seeking R&D collaborations with coastal engineering firms, infrastructure developers, and government agencies to co-develop, testbed, and commercialise this geopolymer-based armour unit technology, accelerating its deployment in sustainable coastal protection projects
Durable Filtration Membranes and Systems for Challenging Wastewater
Industrial wastewater treatment faces persistent hurdles, especially in oil and gas, petrochemical, metal finishing, and food processing industries. Conventional membranes suffer from rapid fouling when exposed to high oil and grease loads, degrade under extreme chemical cleaning, and struggle to maintain flux recovery. This often results in frequent downtime, costly replacements, and an inability to consistently meet discharge compliance. The technology is a next-generation ultrafiltration (UF) membrane engineered for highly aggressive industrial environments. Built from military-grade, chemical-resistant polymers, the hollow fiber design achieves high flux with low fouling, even under extreme conditions such as pH 1–14, temperatures up to 80 °C, high salinity, and oily streams containing up to 5% oil. Unlike conventional polymer membranes, this solution maintains long-term performance through repeated high-caustic (pH 14+) and chlorine (10,000+ ppm) cleanings. It consistently delivers over 95% flux recovery after aggressive NaOH and NaOCl cleaning, preventing irreversible fouling and reducing replacement frequency. Optimized porosity and geometry allow the membranes to handle heavy oil loads while validated cleaning protocols ensure rapid regeneration and stable long-term operation.The proprietary polymer chemistry and crosslinking techniques that form the basis of the membrane provide a competitive edge and ensure consistent performance. The technology owner seeks collaboration with Institutes of Higher Learning, large industrial players with ongoing water reuse, wastewater, or zero-liquid-discharge initiatives, and engineering, and construction firms with opportunities for R&D collaboration, test-bedding, and licensing.
Automated Guided Wave Ultrasonic Imaging for Continuous Pipeline Health Monitoring
To ensure safe and cost-effective operations across various industries, it is essential to identify potential pipeline damage early to prevent leaks. This includes monitoring changes in wall thickness to estimate corrosion rates and alerting operators with advanced warning signals about possible corrosion, allowing for rectification before leaks occur. Conventional thickness evaluation processes require manually scanning pipelines using probes, a method that is tedious and challenging, especially in remote locations. Additionally, the high upfront costs (approximately 75%) of traditional non-destructive evaluation (NDE) methods are often incurred before each pipeline thickness measurement. These costs can be even higher if the pipelines are in inaccessible or harsh environments. To address these challenges, an innovative guided wave monitoring system has been developed, which can be permanently installed at critical points along the pipeline network. This system continuously monitors pipeline wall thickness and assesses potential corrosion damage. Compared to other NDE techniques, it accurately measures corrosion rates, sends early warning signals when wall thickness falls below a critical threshold, and significantly reduces the costs associated with setting up measurement equipment in difficult-to-access environments.
Low-Cost Purple Phototrophic Bacteria For Crop Growth and Aqua Feed Additive
Side stream valorisation in sectors such as food and beverage manufacturing has gained substantial interest over the years. These waste streams, particularly the liquid fraction, are rich in nutrients and organics that can be converted into value-added products through suitable bioprocesses. One promising product is purple phototrophic bacteria (PPB) — a metabolically diverse group of proteobacteria containing bacteriochlorophyll a and b. Due to their versatile metabolic pathways, PPB can effectively remove pollutants from various wastewater streams, even under stressful conditions. Their light-driven metabolism and hormone-secreting abilities also make them excellent bio-fertilizers and bio-stimulants, enhancing soil health and promoting plant growth. The proposed PPB cultivation technology in a photobioreactor (PBR) system achieves higher treatment efficiency and biomass productivity compared to conventional open ponds. The produced PPB biomass has demonstrated its capacity to enrich soil with essential nutrients and supply key phytohormones that support plant development. Beyond agriculture, PPB biomass holds strong potential in aquaculture as a feed replacement or additive. Its high protein content and balanced amino acid profile make it a sustainable alternative to fishmeal. Furthermore, studies have shown that PPB supplementation can enhance fish immune responses and improve resistance to common diseases, supporting healthier and more resilient aquaculture systems. Overall, this innovative PPB cultivation technology enables circular resource recovery and offers a sustainable pathway for the agriculture and aquaculture industries to develop eco-friendly, value-added bioproducts from nutrient-rich waste streams. The technology provider is seeking for collaborators to test bed the technology and to license the technology.
High-Performance Boron Absorbents With Flexibility and Minimal Environmental Footprint
Boron is an essential micronutrient necessary for the growth and development of plants, animals, and humans, while also playing a critical role in industries such as manufacturing, agriculture, and semiconductors. However, while beneficial in trace amounts, excessive boron levels can be toxic. High concentrations in drinking water pose significant health risks, particularly to reproductive and developmental systems, while boron contamination in industrial water supplies can degrade process efficiency and product quality. Current methods for boron removal, such as reverse osmosis and ion exchange, face significant limitations. Reverse osmosis struggles to remove boron efficiently, especially in seawater desalination, often requiring multiple stages and high energy consumption to achieve acceptable levels. Ion exchange resins pose low loading capacity and require massive harsh chemicals for regeneration.  The proposed boron absorption technology provides a solution that efficiently removes boron from diverse water sources, including seawater and wastewater. It effectively reduces boron levels to meet stringent standards, such as drinking water limits of less than 0.5 mg/L. The technology aligns with sustainability goals, consuming fewer chemicals and exhibiting strong recovery stability. Additionally, the proposed absorbent is flexible, customizable and compatible with various water treatment applications. The technology owner seeks partnerships to integrate this solution into existing water treatment systems or collaborate on industrial-scale demonstration projects to address boron contamination across multiple sectors.
Oily Wastewater Treatment Technology using High-Performance Oil-Degrading Microorganisms
The increasing use of fats and oils in food processing has led to higher concentrations in industrial effluents, overwhelming traditional wastewater treatment systems and clogging sewer pipes, which disrupts business operations. Commonly used methods like pressurized floating separation are limited and often result in incineration, increasing waste management costs. Rising treatment costs, odor control, and waste management remain significant concerns for factory operators. This technology uses an innovative "organic treatment method" with powerful microorganisms that decompose fats and oils directly from wastewater. These microorganisms can rapidly degrade various fats and oils, including plant, animal, and fish oils, as well as trans fatty acids, even at concentrations over 10,000 mg/L, using a microbial symbiotic system. Efficiently degrade various fats and oils, including plant, animal, fish oils, as well as trans fatty acids. By decomposing fats and oils directly, it reduces the need for physical separation and incineration, cutting down on industrial waste management costs. This approach also supports sustainable waste reduction and mitigates the risk of clogged sewer pipes. Technology has demonstrated the stable performance of oil decomposition in wastewater throughout a year in a field test at a food oil factory.  The technology owner seeks collaboration with food, oil, and other plants with oily wastewater and wastewater treatment facility providers looking for organic solutions for end users.
Solar Powered Portable Water Purification System
Access to clean and safe drinking water is essential for health, yet millions of people worldwide still lack this necessity. According to the World Health Organization (WHO), over 2 billion people globally use drinking water sources contaminated with feces, leading to severe health consequences. Unsafe water, along with inadequate sanitation and hygiene, is estimated to cause 485,000 diarrheal deaths each year. Water purification technologies face significant challenges, especially in decentralized systems lacking the efficiencies of large-scale operations. They often have a substantial carbon footprint due to energy-intensive processes and reliance on chemicals. Existing portable devices primarily use filtration and have a limited lifetime on-site, with little opportunity for cleaning to restore its performance.  Developed by a research team, this technology effectively addresses the above challenges by employing electrochemical methods that generates strong oxidizing agents to kill micro-organisms present in raw water and potentially degrade organic pollutants that conventional portable reactors cannot remove via filtration. Due to its working mechanism, the device is self-cleaning and does not need regeneration. By harnessing solar energy and activated carbon, this chemical-free purification approach is not only environmentally friendly but also perfectly suited for deployment in remote areas, developing countries, and disaster-stricken zones where traditional water treatment infrastructure is lacking. The technology owner is looking for collaborations with local SMEs to co-develop scaled systems and deploy it through disaster relief organizations, government agencies and non-profit organizations in selected developing countries.