Tech Bundle

Battery Pack System Integration

Ultrathin and Flexible Printed Batteries for Smart Labels, IoT and Medical Wearables
The technology offer presents ultrathin, flexible, safe and high-performance zinc batteries. The patented High Conductivity Polymer Electrolyte (HCPE) is stable, rechargeable, printable to a solid-state. Therefore, it does not need a sealed container. Furthermore, the HCPE allows for low internal resistance, and hence maximizes power. As the chemistry is based on zinc rather than lithium, it avoids the safety issues that have plagued many lithium technologies, such as soil and air contamination when extracting lithium. The expensive casing could be another issue for lithium technology. Since the batteries are printed, they can be produced in most shape and size to meet specific project design needs. This technology offer can provide a safe, disposable and label-like power source for logistics smart tags, data loggers and medical patches. It is making inroads to becoming a de facto green battery chemistry alternative as more product designers and customers demand safer and more sustainable electronic products.
Cost-Effective Energy Storage Solution for Renewable Energy Application
Renewable energy sources are intermittent, this means that electricity generation using these sources fluctuates. To supply the world with 100% renewable energy, energy storage system is indispensable. Conventional battery technologies such as lithium-ion or lead-acid batteries uses toxic materials, relatively expensive and unsafe. This invention provides a cost-effective and scalable flow battery that can store excess renewable energy using water (H2O) and table-salt (NaCl) as the storage medium, which is safer than lithium-ion batteries as these materials are non-flammable. These materials are also abundantly available and cost-effective. The flow battery is highly scalable. The power (in kW) and the energy storage capacity (in kWh) are decoupled unlike lithium-ion or lead acid batteries. This means that one can design the flow battery with a relatively small power but high energy storage capacity – enough to store energy for days to weeks. The flow battery is simple to manufacture and easy to implement. It requires a stack of ion-exchange and bipolar membranes to perform charging and discharging and water storage tanks. The technology provider is keen to work with potential technology adopters through technical collaboration and licensing agreement to deploy the technology in Asia.
High Power Batteries and Thermal Management Solution
The proposed heat management technology focuses on high power applications (above 2C) that result in battery overheating, which can cause significant reduction in lifetime, performance and safety hazards. Thermal Management System (TMS) - During normal operation of batteries, the battery cells emit heat, which could cause the temperature of the battery pack to rise drastically. Without a TMS in place, heat would be trapped in the battery pack and could cause cell-degradation, leading to shortened lifetime, decreased performance and fire hazard. The proposed thermal management solution overcomes battery-overheating issue. The solution consists of liquid cooling and a proprietary material that could effectively prevent fire propagation, extend lifetime and increase performance of the battery.  Working Mechanism of TMS - The TMS works by dissipating heat away from the battery cells. The proprietary thermal material is dielectric and can be poured directly into any battery pack. As the material flows into the pack, the material envelops the cells and serves as a protective layer between the cells. The material solidifies when it cools. During battery operation, the material absorbs heat emitted by the battery cells. Heat is then dissipated from the material via a liquid cooling circuit integrated in the TMS. The technology provider is actively seeking potential partnerships and technology licensing for its (i) proprietary TMS and (ii) standard battery module that consist of the TMS. The technology provider is also open to working with potential partners to fast-track their Second Generation phase change material (PCM) development.  
Highly Effective Thermal Management for Battery Systems
Environmental pollution concerns and high fuel cost is driving the car industry towards Electric Vehicle (EV). Li-ion cell is a common adopted energy source for EV. However, Li-ion cells required proper temperature control to function properly. A key factor that affects the battery is temperature. < 0°C:  difficult or impossible for charging >60°C:  difficult for discharging and risk of degradation, shortened service life >70°C ~ 90°C:  will trigger a self-heating reaction with internal cell faults with risk of thermal runaway, presenting safety hazards. Most Li-ion battery achieves their rated capacity at 20~25°C and their capacity will drop ~10% for every increase of 10°C. Regulating the battery temperature during continuous charge and discharge is a challenge, especially in temperate climates. Existing cooling solutions consist of the battery modules sitting on or attached to heat sinks that are in turn cooled by a coolant loop. The drawbacks are that the cooling efficiency is low, and the effectiveness is poor, since only a small part of each module receives the cooling effect. Besides, heat sinks are generally thick and heavy due to the coolant loop. The result is that temperatures will differ from module to module, cell to cell. Even within the same cell, different regions may have different temperatures. Battery packs used in EVs are constrained by space and weight, so cooling systems for the battery packs must be compact and lightweight, and yet meeting the cooling requirements. Our patent granted technology is able to carry coolant to each individual cell in a compact structure. This ensures consistency and uniformity of heat transfer from each cell in a battery pack, extending their lifespan and safety by allowing them to operate in their optimum temperature range (10 ~ 35°C), Charging and discharging can also take place in all ambient temperature.