Tech Bundle

Future Mobility

Future Mobility explores the movement of people and goods, as well as other ancillary services, via new modes and concepts of mobility which could be electric-powered, autonomously-controlled, and as a shared and interconnected fleet. Shaped by emerging technological trends and shifting attitudes, the future mobility ecosystem could be profoundly different from the one we know today, offering greener, safer, more efficient travel and most of all, greater convenience and comfort.

Embedding Carbon Nanomaterial onto Polymeric Powders for Improved Additive Manufacturing
A method was developed to produce carbon nanomaterial-reinforced polymeric composites in a powder form, which are applicable in conventional powder-based additive manufacturing (AM) techniques such as such as laser sintering or powder extrusion.It was shown that the use of such composite powders enhances sintering behaviour during AM over virgin polymer powders, resulting in improved sintered product properties. This method opens up the possibility of using conventional polymers that once had limited processability in laser sintering due to inferior mechanical and thermal propertiesThrough the control and tuning of formulations and compositions of the composite powders during manufacturing, allowing the thermal and electrical conductance of composites can be adjusted by varying the loading percentage of conductive fillers and the types of surface functionalization. This provides for an adjustable sintering behaviour and finished product property.
Enterprise File Sharing and Collaboration with Military-grade Security and Ease of Access
With rise of data breach incidents and stringent data privacy and compliance norms, organizations are feeling the heat to protect their sensitive data. This further gets complicated with growing business needs to share and collaborate information outside the organization - with partners, suppliers, customers and beyond. The company was accelerated by Airbus via its BizLab program and has built an integrated Digital Vault – an enterprise file sharing and collaboration platform with Military-grade security and ease of access. The Digital Vault helps secure sensitive information with military-grade encryption and private permissioned Blockchain technology. The platform encrypts all stored content, conceals the server itself and leverages blockchain-based digital signature for identity and authentication to securely provide access to bonafide users; thereby allowing institutions to comprehensively address security and comply with regulatory requirements like GDPR and HIPAA
Zero Trust Cybersecurity for IoT - powered by SDP and Blockchain technology
The Internet of Things (IoT) connects numerous everyday devices, opening up previously closed systems to remote access & control. Smart, connected devices are now an integral part of our lives, in business and at home. It is used in smart cities, digital management systems, smart homes, offices, connected cars, Unmanned Aerial Vehicles (UAVs) and even industrial control systems.  However, the rapidly growing world of perpetually-connected smart devices presents proportionally large security risks. Existing security solutions are unable to keep pace, scale-up and address the security challenges facing the emerging IoT world.  The technology owner has built a next-gen cybersecurity solution designed explicitly for connected devices and critical infrastructure in the Internet of Things. The solution harnesses Software Defined Perimeter (SDP) architecture to render critical infrastructure invisible to attackers; while customized agents along with blockchain and Transport Layer Security (TLS) technology delivers a new breed of digital identity and access control for all users and connected devices. 
Highly Effective Thermal Management for Battery Systems
Environmental pollution concerns and high fuel cost is driving the car industry towards Electric Vehicle (EV). Li-ion cell is a common adopted energy source for EV. However, Li-ion cells required proper temperature control to function properly. A key factor that affects the battery is temperature. < 0°C:  difficult or impossible for charging >60°C:  difficult for discharging and risk of degradation, shortened service life >70°C ~ 90°C:  will trigger a self-heating reaction with internal cell faults with risk of thermal runaway, presenting safety hazards. Most Li-ion battery achieves their rated capacity at 20~25°C and their capacity will drop ~10% for every increase of 10°C. Regulating the battery temperature during continuous charge and discharge is a challenge, especially in temperate climates. Existing cooling solutions consist of the battery modules sitting on or attached to heat sinks that are in turn cooled by a coolant loop. The drawbacks are that the cooling efficiency is low, and the effectiveness is poor, since only a small part of each module receives the cooling effect. Besides, heat sinks are generally thick and heavy due to the coolant loop. The result is that temperatures will differ from module to module, cell to cell. Even within the same cell, different regions may have different temperatures. Battery packs used in EVs are constrained by space and weight, so cooling systems for the battery packs must be compact and lightweight, and yet meeting the cooling requirements. Our patent granted technology is able to carry coolant to each individual cell in a compact structure. This ensures consistency and uniformity of heat transfer from each cell in a battery pack, extending their lifespan and safety by allowing them to operate in their optimum temperature range (10 ~ 35°C), Charging and discharging can also take place in all ambient temperature.
Contactless Passive Multifunctional Microsensors – Smallest Sensors in the World
Miniaturized sensors based on glass-coated magnetic microwires (Φ ~ 3-70 µm). Their size, high added value, robustness, multifunctionality, simple production, fast and contactless sensing leads to their utilization as miniaturized sensors with a wide range of applications in industry, IT and medicine.Due to the specific magnetization process, our sensors are sensitive to temperature, stress, magnetic field and any other physical quantities (position, el. current, etc.). Physical principle behind our technology is completely different from classical magnetic sensors, they transform physical quantity into time measurement – easy to digitalize, no interference with voltage noise.
Tri-State Electrochromic Device - Modulation between Transparent, Color and Mirror
Our technology features a three state optical modulation between transparent, color and mirror appearance of a given surface, primarily on glass substrates. The switching between the three states can be triggered by a small voltage application. The versatile electrochromic device allows user to enjoy outdoor view in transparent state, blocking of sunlight in colored state and reflective finish in mirror state. It can offer additional light management capability compared to the solid state electrochromics. This technology is promising for the optical modulation of building façade and fenestration, in reducing energy consumption for in-door air conditioning, creating interactive visual displays on glass or façade decoration for interior designers to create space and light interaction.
TV White Space Super Wi-Fi
Demand for wireless communication is ever-increasing. However, the frequency spectrum is a scarce resource that cannot be created. This has resulted in an issue commonly known as "spectrum crunch" -- a phenomenon where demand for spectrum outpaced supply that resulted in congestion and drop in wireless communication quality.Ironically, measurements done at many places globally concluded that spectrum utilisation was only around 5-15%. This calls for a need to use next-generation technologies to utilise spectrum in an innovative manner in order to ensure sustainability. TV White Space (TVWS) is the first technology that uses spectrum dynamically. It is able to find pockets of unused spectrum dynamically and utilise them for communication. Thus, significantly improve spectrum utilisation. TVWS is also known as Super Wi-Fi as it covers much larger range than Wi-Fi. TVWS can also be touted as the next "sharing economy" in the spectrum. Its concept is similar to Uber or Airbnb where resources (in this case spectrum) are shared whenever or wherever they are not utilised.