
Polishing stainless steel parts with internal channels remains a challenge when aiming for high-quality surface roughness and tight tolerances. Mature technologies often fall short in this area, and traditional polishing methods can also be expensive to set up. Surface finishing is a persistent issue across all metal additive manufacturing (AM) processes, directly impacting part quality and limiting applications. This challenge is particularly pronounced in AM compared to conventional methods due to the inherently rough surface finish and the frequent use of hollow or lattice geometries.
The presented technology offers a potentially more cost-effective, high-quality, and scalable solution for polishing internal channels of 316L stainless steel. It enables rapid, automated improvement of both internal and external surfaces, enhancing appearance, corrosion resistance, and mechanical properties.
The technology provider is open to R&D collaboration where proof of concept for specific applications can be explored. During deployment, guidance on set up and training can be provided. Target audience are additive manufacturers who are interested license and implement this technology to perform electropolishing in-house. The technology owner is also looking to work with product owners or OEM who are interested to implement this technology into their production workflows.
The set up consist of:
Specifications:
This technology can be implemented in industries that require precise, repeatable, high-quality metal parts or polishing of typically inaccessible surfaces. It is suitable for automation for improved productivity. Applications includes:
Compared to traditional polishing methods for stainless steel channels, this technology is more superior due to below reasons: