innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Stand-alone Voice Recognition Smart Wall Switch
The smart wall switch's core technology is centered around the conversion of initial voice-based signals into electrical signals. Through an innovative design, it efficiently generates DC power utilizing solely an AI voice recognition sensor and an existing AC power line. Remarkably, this cutting-edge switch is entirely independent, requiring no additional electrical work, batteries, or Internet connection for its seamless operation.
Flexible Neural Probe for Brain Activity Monitoring and Mapping
Neural probes are used for capturing electrical activities and for exploring functional connectivity in the brain. For neural probes to be effective and be able to capture the activities happening at the scale of neural cells in vivo, they need to be small, made of bio-compatible material, and ideally, be flexible. This ensures that they do not trigger an inflammatory response or have a risk of breakage.  The technology presented here covers the requirements stated above for an ideal neural probe. The probes are flexible and allow superior precise targeting even with movement. The technology employed also avoids breaking and micromotion during the in-vivo trials. The probe’s design is also customizable for different requirements and can support combination of single/dual side, linear/tetrode, recording/stimulating/mixed and single/multi shank configurations for differing use cases. The probes can support up to 32 channels and provide multiple connectivity options for integration. 
Flexible Printed Battery as a Sustainable Power Source
With a projected market size of close to US$300M in 2025, printed thin film batteries are emerging as ideal candidates to power the next-generation wearables, medical and electronic devices. Unlike conventional batteries, printed thin-film batteries offers form-factor freedom, flexibility, providing power at sub-milimeter thickness and potentially cost effective to manufacture. Typically, zinc-manganese has been the chemistry of choice for printed batteries thanks to its low cost, high safety and ease of processing. Printed battery is manufactured by depositing conductive ink as a thin-film of paste onto a flexible polymer substrate (e.g., PET or heat-resistant polyimide films) by screen printing technique. Developed by an SME, the proprietary printed battery technology consists of layers of zinc anode, manganese dioxide cathode, electrolyte, separator, current collectors and sealing materials. The final battery is about 0.7 mm thick. While the energy capacities and size/shape could be customised depending on the use cases, the printed battery is best suited for applications at a power consumption of less than 50 mW. The technology owner may provide an initial assessment of the feasibility in using printed battery as a power source. If feasible, the technology owner may support in further brainstorming to optimise the power requirement and battery capacity for potential use cases. With a full grasp of the technical requirements, co-development activities including prototyping, battery integration with the final product (where applicable) will follow. For selected final products, the technology owner may serve as the original equipment manufacturer or original design manufacturer for the technology seeker.
Culturing Methods of Homogenized Organoids for Mass Production and Automation
Traditional methods of culturing organoids are labor-intensive, time-consuming, and limited in their ability to produce large quantities of organoids with consistent quality and characteristics. This technology enables the production of homogenized organoids of consistent quality. It utilizes specialized conditions to facilitate mass production and automate the cultivation of organoids derived from various tissues and organs, including the liver, kidney, lung, and brain. The IP addresses a need in the marketplace by providing a more efficient and cost-effective method of producing organoids. This technology reduces the time and cost of producing organoids while improving the reproducibility and scalability of the process. This can accelerate drug discovery and development, improve the accuracy of toxicology testing, enable the development of personalized medicine, and eventually replace the need for animal testing in the long-term vision of drug development. The technology provider will be producing the desired organoids as the end product with a further aim to enable a platform service for toxicity and efficacy testing when fully commercialized. The identity of the organoids will be validated by expression of relevant biomarkers. The end users of this technology are likely to be pharmaceutical companies, biotech firms, academic research institutions, and clinical laboratories. Overall, the technology has the potential to transform the way organoids are produced and used in the biomedical field. The technology owner is actively seeking for R&D collaboration to allow integration into existing protocols and testing with institutions, biotech companies and Contract Research Organizations (CROs).
Plant-based Fermentation Technology
Fermentation is an old method used mainly for food preservation. However, when the technology is well known and controlled, it can be a great asset for:1. Taste: improving the taste of foods and drinks or providing exotic flavors (umami)2. Texture: Improving the structure of foods and drinks by making them smoother, more tender or creamier, or in gluten-free baked products, making them crispier, chewier or with improved raising doughs.3. Nutrition value: improving the bioavailability of vitamins and minerals or other health promoting compounds.4. Health: when foods and drinks are fermented with probiotic bacteria, they can improve gut healthy and consumers lifestyleAny food company interested in having a premium quality in their product portfolio, should partner with us to developed better foods.We own the bacteria used for improving foods and drinks as well as the knowledge of how to use them in product development.