innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Rapid Formalin Test Kit
The formalin test kit is a paper-based device suitable for detection of formalin contamination in paints, coating material such as pressed wood and plywood, fresh food such as meat, vegetables and fruits with 99.9% sensitivity & specificity, ensuring accurate results without interference. The test kit is quick and easy to use, with rapid results making it accessible for general use. The tech provider is looking for licensee to license the technology. The Formalin test kit consists of three main components: (1) paper-based testing device, (1) control solution bottle, and (3) sample testing vial. The test kit provides rapid analysis and is simple to use by only dropping the sample solution obtained from the reaction vial onto the portable paper-based device (T Zone) to allow the reaction, while the control solution is added to the C Zone to verify the device's validity. After 5 minutes, the test result can be read based on the colour diameter and comparing it to the colour chart indicated on the device to see if the tested material/food is safe. This Formalin Test Kit can be applied in the food, coatings industry to verify the safety of products before use and exporting. It is also useful for public health agencies, testing companies, both governmental and private, as well as for general consumers who wish to conduct testing. A rapid paper-based formalin test kit with innovative detection format by reading the colour diameter for effectively detection of formalin contamination without interference from the food/material background colour. Formaldehyde, Test Kit, Formalin, Coating, Food additive, Paint, Toxin Healthcare, Diagnostics, Environment, Clean Air & Water, Biological & Chemical Treatment, Foods, Quality & Safety
Low-Cost Cultivation of Purple Phototrophic Bacteria (PPB) For Plant Growth Support
Side stream valorisation in sectors such as food and beverage manufacturing has gained substantial interest over the years. The waste streams, in particularly the liquid has high amount of nutrients and organics, in which suitable bioprocesses can be deployed to convert them into value-added products. One product of interest is the purple phototrophic bacteria (PPB), a metabolically diverse group of proteobacteria that contains pigments bacteriochlorophyll a and b. Attributed to its unique versatile metabolic pathways, PPB can be used as powerful pollutant removal in different types of wastewater treatments, under stressful conditions. Its light utilization process and hormone secreting properties also made PPB a good bio-fertilizer and bio-stimulant for plant growth.  This proposed PPB cultivation technology in photobioreactor (PBR) system has greater treatment efficiency and higher biomass conversion rate than conventional open pond systems. Biomass generated from this cultivation technology demonstrated its ability to enhance essential nutrients in soil and supply key plant hormones that aid in plant growth. This novel application of PPB can be adopted in the agriculture industry, in the effort to develop more eco-friendly agricultural inputs.  The technology provider is seeking for collaborators to test bed the technology to license the technology. The biomass conversion process boasts high efficiency, achieving up to 0.8 grams of biomass for every gram of chemical oxygen demand (COD) removed. Its versatility allows it to work with various types of feed, adaptable to different loads and conditions. High efficiency and robustness of the technology also contribute to more compact system design and lower operating cost. This sustainable approach in PPB production utilizes waste streams from food manufacturing sectors, transforming waste into valuable products. Additionally, biomass generated from the technology offers a novel application in stimulating and supporting plant growth. The PPB technology can be deployed in wastewater treatment processes, to remove organics and pollutants efficiently. PPB can enhance essential nutrients in the soil and support plant growth. It can be used as alternative agricultural inputs such as bio-fertilizer and bio-stimulant, promoting crop yield in a sustainable manner. Value-added product derived from the technology also has high level of protein content, which can be utilised as alternative in animal feed formulation for aquaculture or livestock breeding. This novel compact PPB cultivation technology offers higher treatment efficiency and wider product applications than the conventional open ponds systems. Purple phototrophic bacteria, bio-fertilizer, agriculture, valorisation, microbes, PPB Foods, Quality & Safety, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Food Security
Peptide Enriched Rejuvenating Serum and Radiance Booster
The increase in porcine production in Thailand has led to a rise in the volume of waste and by-products from farrow-to-finish farms. Among these by-products, the porcine placenta is of particular interest due to its rich composition of bioactive components such as cytokines, enzymes, growth factors, collagen, bioactive peptides, vitamins and nucleic acids. Hence, there is growing interest in developing appropriate technologies to derive value from this resource, transforming it into high-value products. This technology presents an innovative serum with the primary ingredient being peptides derived from hydrolysed porcine placenta. The peptides were selected based on specific molecular weight sizes which influence bioactivities. The porcine placenta hydrolysate facial serum was found to reduce melanin production, diminish facial skin dullness, decrease water loss from the skin surface, maintain skin moisture, and enhance facial skin elasticity. The peptides are derived from hydrolysed porcine placenta using enzymatic methods and ultrafiltration membrane separation, which ensures high biological activity. Advanced techniques were used to analyse peptide structures, determining the amino acid sequences that exhibit significant biological activity. Various biological activities were tested both in vitro and in vivo cells, allowing the identification of effective doses.  Rich in epidermal growth factor, antioxidants, anti-tyrosinase, anti-elastase and anti-bacterial peptides, the serum’s efficiency was evaluated on 30 volunteers over one month, adhering to pharmaceutical principles and with proper human research ethics approval. The porcine placenta hydrolysate facial serum was found to reduce melanin production in a month, increase skin firmness and elasticity by 60% in 2 weeks and hydrates the skin after use. The peptides produced from hydrolysed porcine placenta developed for use in various types of skincare and cosmetics. The process can be extended to develop applications as alternate functional food ingredient and dietary supplements. This proprietary technology enables the production of peptides with small particle size that can be absorbed more easily into human skin. Moreover, this product does not need to be further converted to an active form such as in the case of retinol, leading to faster improving skin. Personal Care, Cosmetics & Hair, Nutrition & Health Supplements, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Sustainable Living
Recycled Mixed Polymer Modifiers in Bituminous Materials
The use of plastic waste is severely restricted due to high levels of contamination, expensive sorting processes, and the non-homogeneous nature of the materials. These challenges contribute to low recycling rates both locally and globally, with most plastic waste being disposed of through landfilling or incineration, leading to further environmental concerns.  This technology aims to create sustainable products and processes for infrastructural applications by transforming mixed plastics from municipal solid waste (MSW) into raw materials like fibres, aggregates, and polymer modifiers, which can be incorporated into bituminous mixtures. It is the first of its kind to enable the direct use of MSW mixed plastics without the need for extensive sorting. The as-received mixed plastic waste is processed into standardized forms commonly used in the construction industry. Given the large scale of infrastructure projects, this technology can absorb significant volumes of plastic waste, reducing the demand for landfill space and eliminating greenhouse gas emissions (such as CO2) and toxic pollutants (like dioxins) from incineration.   The technology owner is looking for collaborations (R&D, test-bedding and/or licensing) with oil industry companies, road paving companies, building and construction industry players, waste management centres, institutes of higher learning (IHLs), and government agencies.  The technology incorporates several proprietary systems designed to efficiently process mixed plastic waste. These include:  Sink-float vessels: Provide high separation efficiency, allowing for the effective separation of mixed plastic waste based on density.  Calibration library: Offers accurate real-time measurement of the composition of as-received mixed plastic waste, ensuring precise processing.  Compositional adjustment/standardization unit: Standardizes the composition of mixed plastics to meet industry requirements for infrastructure applications.  Advanced Mechanical Recycling (aMR) process line: A cutting-edge process line that converts mixed plastics into usable raw materials, such as polymer modifiers, for incorporation into bituminous mixtures. These technical features enable the transformation of contaminated, mixed plastic waste into standardized, valuable products for the construction industry.  Substitute for commercial polymer-modified bitumen in asphalt road pavements.  Substitute for commercial polymer modifiers in waterproofing materials.   Coatings and paints for marine, floating, coastal protection, and underground structures.  First-of-its-Kind Technology: Allows direct use of as-received mixed plastics from MSW without the need for costly and complex sorting processes.  Standardized Materials for Infrastructure: Processes mixed, contaminated plastics into standardized materials used in construction, such as polymer-modified asphalt. Consistency Through NIR Calibration Model: Uses a Near Infra-Red (NIR) calibration model and machine learning based on NEA’s plastic composition data to ensure consistent quality of mixed plastic waste.  Enhanced Bituminous Mixtures: Improves technical properties of bituminous mixtures by creating a 3D cross-linked polymer structure within the matrix, enhancing durability.  Cost Savings: Offers 15%-25% cost savings compared to conventional polymer-modified bitumen.  Environmental Impact: Reduces waste going to landfills and incineration, providing a sustainable solution for the construction sector. recycled mixed plastics, polymer modified bitumen, asphalt wearing course, binder testing, environment testing, microplastics, ground water Waste Management & Recycling, Industrial Waste Management, Sustainability, Sustainable Living
High-Performance Boron Absorbents With Flexibility and Minimal Environmental Footprint
Boron is an essential micronutrient necessary for the growth and development of plants, animals, and humans, while also playing a critical role in industries such as manufacturing, agriculture, and semiconductors. However, while beneficial in trace amounts, excessive boron levels can be toxic. High concentrations in drinking water pose significant health risks, particularly to reproductive and developmental systems, while boron contamination in industrial water supplies can degrade process efficiency and product quality. Current methods for boron removal, such as reverse osmosis and ion exchange, face significant limitations. Reverse osmosis struggles to remove boron efficiently, especially in seawater desalination, often requiring multiple stages and high energy consumption to achieve acceptable levels. Ion exchange resins pose low loading capacity and require massive harsh chemicals for regeneration.  The proposed boron absorption technology provides a solution that efficiently removes boron from diverse water sources, including seawater and wastewater. It effectively reduces boron levels to meet stringent standards, such as drinking water limits of less than 0.5 mg/L. The technology aligns with sustainability goals, consuming fewer chemicals and exhibiting strong recovery stability. Additionally, the proposed absorbent is flexible, customizable and compatible with various water treatment applications. The technology owner seeks partnerships to integrate this solution into existing water treatment systems or collaborate on industrial-scale demonstration projects to address boron contamination across multiple sectors. High Efficiency: Effectively reduces boron concentrations in various water sources, including seawater and wastewater, meeting stringent standards (e.g., <0.5 mg/L for drinking water). Sustainability: Consumes trace chemicals during the process and offers robust regeneration stability. Flexible & Customizable: Sponge-like composite, elastic and flexible, allowing easy scalability for large-scale applications. Cost-Effective: The technology lowers operational costs due to its high performance and reduced chemical usage. Desalination Plants: Particularly useful in seawater desalination, where boron concentrations must be reduced to meet drinking water standards. Drinking Water Systems: Ensures that water meets strict regulatory standards. Industrial Wastewater Treatment: Removes boron from industrial effluents, especially in sectors that release boron-laden waste, ensuring compliance with environmental regulations. Semiconductor Industry: Used to purify water in semiconductor manufacturing, where trace amounts of boron can affect production quality. Superior Boron Removal Efficiency: Achieves boron concentrations below 0.5 mg/L, meeting stringent drinking water standards, which is a challenge for existing methods like reverse osmosis and ion exchange. Cost-Effectiveness: The high-performance absorbent minimizes chemical input during regeneration, contributing to both cost reduction and sustainability. Robust Recovery and Stability: Exhibits strong regeneration stability over >15 cycles, maintaining its high performance. boron removal, column adsorption, low environmental footprint, flexible, sustainable Environment, Clean Air & Water, Filter Membrane & Absorption Material, Sustainability, Sustainable Living
Metal Alloy Formulation and Development
Materials play a crucial role in the development of metallic products, but traditional alloying methods face significant challenges due to rising costs and the limited supply of key materials, such as copper, which has experienced a price increase of over 60% in the past decade. Additionally, conventional melting processes, such as resistance heating, are often constrained by poor temperature control, uneven heating, and high energy consumption, leading to inconsistent alloy quality and increased production costs. Addressing these issues is essential for improving the economic viability and environmental sustainability of engineering projects. This technology introduces a novel approach that combines unconventional alloying concepts with induction melting to overcome the limitations of traditional methods. By employing multiple high-content alloying elements, this method enables the creation of alloys with unique and enhanced properties that go beyond what is possible with traditional single-element alloys. Induction melting results in uniform heating, reduced energy consumption, and enhanced alloy quality, significantly improving the production process. The technology is capable of developing specialized alloys, such as light metal alloys, while addressing the pain points of material and production costs and environmental sustainability. Specifically, the developed alloys offer microhardness of 95-100 Hv, tensile strength of 305-320 MPa, and an excellent strength-to-weight ratio, providing a competitive alternative to conventional materials like copper and brass. The technology owner seeks collaborations with industry players in appliance manufacturing, aerospace, automotive, construction, and electronics to co-develop and commercialize these advanced resistive heating applications.  Processing Accurate Heating: Induction heating allows for highly accurate and rapid temperature control, essential for melting and alloying processes involving multiple elements. Uniformity: The advantage of adopting an induction furnace is that it is a clean, energy-efficient and well-controlled melting process, compared to most other means of metal melting, thus reducing the risk of segregation or uneven melting. Efficiency: Induction heating converts electrical energy directly into heat within the metal, minimizing energy loss. This can lead to lower operating costs and a smaller environmental footprint. Versatility: Induction heating can be used to melt a wide variety of multicomponent alloys, from simple binary alloys to complex ternary or quaternary compositions. It can handle metals with varying melting points and electrical conductivities. Materials Enhanced Properties: By combining multiple elements, it's possible to achieve superior properties like increased strength, corrosion resistance, heat resistance, or electrical conductivity. Tailored Performance: The precise composition of a multicomponent alloy can be adjusted to meet specific requirements, making them versatile materials for a wide range of applications. Advanced Processing: The use of induction melting can provide the requirement of proper mixing and homogeneity for this type of complex alloys. Multicomponent alloys, due to their tailored properties and superior performance, have a wide range of potential applications across various industries: Aerospace: Lightweight alloys for aircraft structures to reduce weight and improve fuel efficiency. Automotive: High-strength alloys for vehicle frames and other structural components. Lightweight alloys for body panels, wheels, and other components to improve fuel efficiency. Construction: High-strength alloys for buildings, and other structural components. Corrosion resistant alloys for marine structures, piping, and other applications exposed to harsh environments. Electronics: Conductive alloys for electrical connectors, wires, and other components. Tailored Properties: Multicomponent alloys provide highly customizable compositions, allowing precise tuning of properties like strength, weight, conductivity, and corrosion resistance to meet specific application needs. Superior Performance: These alloys offer significant improvements over traditional materials, such as enhanced strength, corrosion resistance, and thermal stability.  Induction Melting, Metal Alloys, Multicomponent Alloys Waste Management & Recycling, Industrial Waste Management, Sustainability, Low Carbon Economy
Eco-friendly Coating for Preservation of Tropical Fruits
Globally, the post-harvest loss of tropical fruits due to short shelf life is estimated to be around 30-50% of total production. This translates to approximately 30 million tons of fruit wasted each year. The economic cost is substantial, amounting to billions of dollars annually, affecting producers, retailers, and consumers due to reduced availability and increased prices. Proliferation of fungal and bacterial population further adversely impact the shelf life and fruit health. Our innovation offers tailored, edible coating using regulatory approved ingredients specific to the fruit family and microbiomes observed in the farms. Tests conducted in labs and farms over the past two years have provided positive results for tropical fruits such as mango, avocado and papaya in doubling shelf life. This solution has multiple benefits to the stakeholders in the industry value chain. The farmer and aggregator can sell with better assurance to wider export markets and also charge a premium for fresher, tastier and longer lasting fruits. This also provides more time for retailers to sell the produce and to reduce dependency on cold storage and costly supply chain management. This innovation contributes significantly towards better food security and sustainability goals. The technology provider is seeking to conduct further trial with farmers, aggregators in Asia to enhance their solution. Our fruit coating technology utilises ingredients that are vegan, halal, and previously determined to be generally recognized as safe by regulators. These priviledged coatings extend shelf life by controlling water loss, texture deterioration, microbial growth, respiration (O2 and CO2 permeability throught the skin), and senescence processes (modification of internal atmosphere). The team works through the microbial dynamics at each stage of the supply chain, develops and validates region-specific targeted interventions, enhancing the efficacy of our coatings. In summary our solutions enable healthier, fresher and longer lasting tropical fruits through effective control over: Dehydration (We keep the water in to delay the fruit from drying out) Oxidation (We balance the gases movement) Microbial and pathogen growth (We make it difficult for bacteria, yeast, and mould to adversely impact shelf life) The technology provider is looking for collaborators such as retailers, aggregators, importers to farms, distributors and exporters. The technology provider is open for collaborations with like-minded individuals and organisations, specialising or concerned about food security and fruit wastage as a key pressing global challenge. Fruit postharvest processing; fresh agricultural products; fruit exports Widen supply chain options for importers, retail chains and wholesalers Exporters, aggregators or farmer to enable healthier longer lasting fruits for consumers who do not need to consume in a hurry. Nearly a third of the global fruits produced continue to end up in spoilages. Global trade combined for Avocado, mango and papaya exceeds $40b. This represents a significant global market opportunity for the solution, when by investing say 5% of the spends, 20 to 30% wasted spoilage can be saved. This presents an attractive global market potential for $100m potential revenue, considering a conservative 5% of market share*. In Asia alone, due to inadequate supply chains, cold storage and climatic conditions, the fruit losses are even higher. With increasing consumer awareness, fresh tropical fruits are also the most consumed fruits in Singapore and nearby regions. A couple of scenarios below depict the ground-up market potential, considering just for one fruit (papaya or avocado) in these countries.  This potential will only be enhanced further once the added benefits of reduced dependence on packaging, transportation and cold storage are considered.     Market for Papayas in Singapore S$37.1M Retailers’ potential savings from using our solution S$5.4 – 11.2 M   Market for Indonesian Avocados S$637 M Retailers’ potential savings from using our solution S$72 – 153 M Thus, starting off by addressing the challenges faced in Singapore and Asia, the adoption could be expanded for catering to global markets, leading to a multi-million potential in the years to come.  * Major Tropical Fruits: Market Review Preliminary Results (2023), FAO Technology: Our technology revolves around proprietary edible coatings derived from natural plant materials that have antibacterial and antifungal properties. This innovative approach forms a protective film barrier around fruits, significantly protects the fruit from bacterial and fungal growth, and slows down water loss and oxidation—the primary causes of spoilage. Unlike competitors which do not tackle bacteria or fungal infection, limit efficacy or rely on additives or gases to regulate ethylene levels or employ specific packaging solutions, our technology is a one-step process in the supply chain. This unique technology preserves the natural freshness and quality of produce and reduces the need for refrigeration and synthetic preservatives, which can lower overall operational costs. Business Model: We aim to spin off this technology and will operate on a business-to-business (B2B) model, collaborating closely with growers, suppliers, and retailers across the food supply chain. We will generate revenue through licensing our technology and sell our proprietary coatings to partners, alongside providing consulting and integration services. This model allows the technology to scale its impact by embedding our technology directly into existing supply chain processes, optimizing efficiency and reducing food waste. Cost Efficiency: Our technology offers cost efficiency by extending the shelf life of produce without requiring extensive cold chain infrastructure or costly equipment. By reducing the frequency of spoilage and waste throughout the supply chain, we help partners save on losses associated with unsellable produce and logistical expenses related to cold storage and transport. This cost-effectiveness aligns with market demands for sustainable solutions. Fruit spoilage, Food loss, Shelf life extension, Supply chain de-risking, Food security, Environment sustainability Foods, Quality & Safety, Packaging & Storage, Sustainability, Circular Economy, Food Security
Eco-Friendly and Cost-Effective Modular PV Recycling Solution
The global demand for proper end-of-life management of photovoltaic (PV) panels is rising, with an estimated 78 million tonnes of PV waste expected by 2050. Singapore's rapidly expanding solar industry faces a growing challenge of sustainable disposal as it anticipates a solar capacity of over 1.2GW by 2024. According to International Renewable Energy Agency (IRENA), this could result in 3,000 tonnes of PV waste in 2024-2025 and up to 6,600 tonnes by 2030. Given Singapore's limited land space, there is an urgent need for efficient and profitable recycling solutions to minimize solar panel waste going to landfills. This solution enables PV panel recycling through fully mechanical processes housed in a 40-foot shipping container. Unlike traditional methods that use thermal treatments or harmful chemicals, it employs customized robotic and mechanical processes, producing no chemical waste and consuming less energy. As a mobile solution, it can be deployed directly at decommissioning sites, eliminating the need for transport to centralized facilities and significantly reducing logistics costs. This environmentally friendly, cost-effective solution turns PV waste into a profitable business opportunity. It offers a circular, plug-and-play solution for recyclers looking to quickly expand into solar panel recycling and meet market demands efficiently. It delivers environmental, technological, and commercial benefits. The technology owner is keen to collaborate with local and international e-waste recycling companies with established material networks for aluminium, glass, and silicon, as well as partners with advanced extraction technologies or further upcycling capabilities for silicon and silver. Modular and Scalable Design: housed within a 40-foot shipping container for easy transport and setup Plug-and-Play Deployment: directly powered a single 3-phase, 415V power supply for quick operation Mechanical-Based Recycling: powered by an integrated power distribution board with an HMI panel for real-time monitoring and control of the recycling process IoT-Enabled Tracking: monitors material output and system throughputs, with data uploaded to the cloud for performance tracking Integrated Dust Collection System: ensures effective pollution control during the recycling process Efficient Material Processing: converts solar panels into ready-for-sale materials such as aluminium, glass, copper and silicon, achieving over 99% recovery rate Mobile Recycling Units: its plug-and-play design makes it ideal for temporary setups at different sites, providing a flexible and cost-efficient recycling solution Large-Scale Solar Farm Decommissioning: the decentralized PV recycling line can be deployed directly on-site, enabling in-situ processing of end-of-life solar panels. This reduces logistics costs, especially for large solar projects Solar Panel Manufacturing: helps manufacturers effectively dispose of defective panels produced during production, ensuring proper waste management practices. Modular Scalability: as demand grows, the recycling line can be expanded by adding more modular units, allowing it to adapt to both small and large-scale operations Globally, the solar panel recycling market is projected to be worth USD 385 million in 2024, with a forecasted growth to USD 931 million by 2029, at a CAGR of 19.3%.The largest markets for solar panel recycling are in the Asia-Pacific, North America, and Europe. Recent policy changes in the US and EU, promoting Extended Producer Responsibility for e-waste management, including solar panels, are driving increased demand for cost-effective recycling solutions. The decentralized solar panel recycling solution offers four key advantages over conventional solutions available in the market: Environmentally Friendly: unlike traditional methods that rely on thermal and chemical treatments, this solution uses only robotic and mechanical processes, reducing energy consumption and eliminating hazardous gas emissions Reduced Logistics Costs: the patented containerized design enables easy transport to decommissioning sites like solar farms, eliminating the need to move panels to a centralized facility and significantly reducing logistics costs Streamlined Operations: integrated AIoT features track material output and system throughput, simplifying the recycling process and enabling digital management of recycling operations for greater efficiency Profit Maximization: by minimizing operational costs and maximizing throughput, the solution turns solar panel waste into valuable materials, creating a profitable business opportunity from an industry challenge Solar Recycling, PV, Waste Management, Container, Mobile, Plug-and-Play, carbon footprint Energy, Solar, Waste Management & Recycling, Industrial Waste Management, Sustainability, Circular Economy
Oily Wastewater Treatment Technology using High-Performance Oil-Degrading Microorganisms
The increasing use of fats and oils in food processing has led to higher concentrations in industrial effluents, overwhelming traditional wastewater treatment systems and clogging sewer pipes, which disrupts business operations. Commonly used methods like pressurized floating separation are limited and often result in incineration, increasing waste management costs. Rising treatment costs, odor control, and waste management remain significant concerns for factory operators. This technology uses an innovative "organic treatment method" with powerful microorganisms that decompose fats and oils directly from wastewater. These microorganisms can rapidly degrade various fats and oils, including plant, animal, and fish oils, as well as trans fatty acids, even at concentrations over 10,000 mg/L, using a microbial symbiotic system. Efficiently degrade various fats and oils, including plant, animal, fish oils, as well as trans fatty acids. By decomposing fats and oils directly, it reduces the need for physical separation and incineration, cutting down on industrial waste management costs. This approach also supports sustainable waste reduction and mitigates the risk of clogged sewer pipes. Technology has demonstrated the stable performance of oil decomposition in wastewater throughout a year in a field test at a food oil factory.  The technology owner seeks collaboration with food, oil, and other plants with oily wastewater and wastewater treatment facility providers looking for organic solutions for end users. The technology integrates a decomposition tank with activated sludge treatment, where fats and oils are directly degraded and eliminated by the microorganisms. This setup, positioned upstream of the activated sludge tank, simplifies the overall waste treatment process compared to conventional methods, significantly reducing both the initial construction costs for new facilities and the ongoing costs of treating oily sludge. To ensure stable decomposition, a daily addition of the fats and oils-degrading microorganisms at 1/1000 of the wastewater volume is recommended. This on-site equipment, replenished monthly with microbial inoculate, an activator, and nutrients, amplifies the microorganisms 100-fold before introducing them into the decomposition tank, allowing for efficient and manageable wastewater treatment. The technology can be applied in fields that require oil and fat degradation via a sustainable solution. Food Industry: Treatment for food processing plants with high oil and fat content, effective for managing fatty and oily waste from food related garbage (vegetables oils and animal fats). Wastewater Treatment facilities: Wastewater treatment systems looking for sustainable fat and oil degradation technologies. Cosmetics: Treatment of oils, fat, waxes or for cleaning operations. The global market of fats and oils processing is estimated to be 1 trillion USD. Degradation Capability: This approach uses a single decomposition tank upstream of the activated sludge treatment to directly degrade wide range and high concentrations of both animal fat and vegetable oils. Cost Efficiency: The simplified treatment process reduces the need for extensive facility construction and lowers ongoing operational costs.  Reduced Environmental Impact: By eliminating fats and oils at the microbial level, this method significantly reduces the volume of industrial waste, aligning with sustainable waste management goals. Proven Performance: Demonstrated year-round stable performance in field tests at a food oil factory, successfully substituting traditional pressurized floating separation facilities and reducing wastewater treatment costs. Environment, Clean Air & Water, Biological & Chemical Treatment