innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Revolutionizing PGM Recycling: Efficient Recycling of Platinum Group Metals
Platinum group metals (PGMs) are critical raw materials essential in diverse industries, including automotive catalytic converters, jewelry, glassware, petrochemical refining, electronics, and healthcare sectors like pharmaceuticals and dental implants. Primarily sourced through the mining of PGM ores, they constitute about 70% of the global PGM supply, with South Africa and Russia accounting for 85% of this production. This concentration in supply can lead to price gouging and market monopoly. Recycling PGMs from waste not only mitigates the supply shortfall but also reduces environmental impacts compared to mining. However, conventional recycling methods are energy-intensive, requiring temperatures around 1500°C, and involve costly downstream processing to treat waste. Furthermore, the high processing temperatures result in high-value raw materials being burnt and releasing harmful toxins. The technology owner has developed a novel biorecovery method that incorporates and modifies a series of biochemical and biological processes into a streamlined 3-stage process as opposed to the multi-tiered stages of current conventional methods used in industry. It offers the following advantages over the competition: Energy Efficiency: consumes 6x less energy than traditional methods Cost Effective: 3x cheaper in operation cost High Yield: capable of recovering multiple PGM simultaneously with high yield even from low-grade waste Sustainability: support company decarbonization goals by offering a truly green and sustainable recycling manner for spent catalyst The core process and specifications of the technology are summarised as follows: Statistically-Optimised Ultrasonication: as a key pretreatment step, this sonication method effectively removes all undesirable metals from waste, isolating PGM-rich materials, called the PGM-preconcentrated stream, enhancing the efficiency of subsequent steps. Bioextraction Technique: secondly, utilise a novel and unique bioextraction technique to extract PGMs from waste with high efficiency (i.e., 99% recycling rate per cycle for rhodium (Rh), 92-95% per cycle recycling rate for platinum (Pt) and palladium (Pd)). It can be employed at a commercial scale without compromising yield. Bioreduction, Bioaccumulation, and Bioprecipitation: a combination of these improved biological processes are used in the third step to produce PGM into powder form which further undergoes separation and purification to produce high-purity PGM products. This technology is ideal for industries that are interested to recycle their spent catalysts. The potential applications are as follows: Catalyst manufacturers Precious metal recycling companies Electronics and lithium ion battery (LIB) manufacturers Waste management companies Modular design: reduced logistics costs and downtime Lower cost (CAPEX & OPEX) compared to existing technologies Superior recovery rate: even for low-grade wastes  Sustainable and efficient recycling: offer significant step towards decarbonisation in industrial practices Biorecycling, Platinum group metals, Low carbon emission, Decarbonisation, Clean technology, Circular economy Chemicals, Catalysts, Environment, Clean Air & Water, Biological & Chemical Treatment, Waste Management & Recycling, Industrial Waste Management, Sustainability, Circular Economy
Multi-Functional Autonomous Facility Management Robot
The adoption of multi-functional autonomous robots is steadily increasing to support and enhance operational efficiency in the facilities management sector. This technology presents a robot integrated with advanced sensor systems, artificial intelligence (AI), and autonomous mobility to perform multiple tasks. As a digital concierge, the robot provides enhanced visitor experience with seamless 2-way communication and an integrated touchscreen to connect with site duty personnel. The same screen can double up as an announcement board for advertisements and alerts, thereby extending a virtual front-desk capability effectively. In the security domain, this robot conducts autonomous patrols with real-time video surveillance and A.I.-based anomaly detection. The security head is embedded with a "brain” to perform on-edge computing to detect security-related used cases, significantly improving safety and accuracy in complex indoor environments. For cleaning, the robot can detect over 30 types of waste with 99% accuracy. Its self-adaptive cleaning system adjusts to floor type and debris volume, while a verification mechanism ensures more effective spot-cleaning compared to conventional single-pass robots.  These Multi-Functional Autonomous Facility Management Robot can yield significant operational savings, increase patrol frequency and shorten response time to incidents. This technology offers a software that features plug-and-play solutions that be customised to specific SOPs and needs. The technology owner is looking for collaborators, such as building owners and integrated facility management companies, with use cases to test-bed AI models. Examples include but not limited to identification of suspicious baggage, illegal parking or stray supermarket trolleys.  The robot combines autonomous navigation with real-time AI processing. Its modular design allows for easy customisation based on operational needs. Key components include: Sensor suite featuring 32-beam 3D LiDAR, ultrasonic sensors & cameras for obstacle detection or environmental mapping AI-powered modules for object/person detection, thermal imaging, and anomaly alert Cloud-based dashboard for task assignment, remote monitoring, and analytics Interchangeable task modules for cleaning (e.g., vacuum/sweeper), security patrolling, and data capture Detect over 30 types of waste with 99% accuracy, with cleaning efficiency reaches up to 15,550 m²/hr Customisable module to fit specific applications This multi-functional robotic platform is ideally suited for deployment in environments that require a combination of cleanliness, security, and user interaction, particularly where operational efficiency and manpower optimization are key priorities. Industries and settings include: Commercial buildings: Automates cleaning, performs security patrols during and after hours, and assists visitors Healthcare facilities: Maintains hygiene, monitors for safety risks, and provides non-contact concierge functions Transportation hubs (airports, train stations): Enhances public safety and facility cleanliness at scale Retail complexes and malls: Supports shopper engagement, provides sanitation services, and detects anomalies Educational institutions and campuses: Ensures safe, clean, and welcoming environments Hospitality and mixed-use developments: Offers 24/7 concierge support, patrolling, and environment upkeep The global service robotics market is projected to grow by a CAGR of 30.25%, or $90.4 billion, from 2024 to 2028. This rapid growth will be driven by the continuing integration of advanced technologies such as IoT, A.I., and natural language processing into service robots. Technological advancements in machine learning, adaptive computing, and vision systems will also make service robots increasingly suitable for commercial tasks.  This autonomous multi-functional robot offers a comprehensive upgrade over current facility management solutions by integrating various functions in domains such as cleaning, security, and concierge into a single, intelligent body. This all-in-one solution delivers: Operational cost reduction through task consolidation across different functions, potentially cut cleaning and security manpower cost by 60-70% Faster response from sensing to action with integrated digital concierge, dashboard monitoring and real-time alerts Enhanced safety via advanced 3D spatial awareness Improved service quality without added manpower By unifying execution and intelligence across multiple domains, the robot transforms traditional building operations into efficient, autonomous workflows, bridging the gap between insight and action, delivering a more responsive, self-sufficient, and cost-effective solution for modern facility operations. Autonomous robotics, Integrated facility operations, cleaning automation, security surveillance, AI, robots, multi-function Green Building, Sensor, Network, Building Control & Optimisation, Infocomm, Robotics & Automation, Ambient Intelligence & Context-Aware Computing, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Dilution Air Purification Systems (DAPS)
This technology represents an innovative approach to indoor air quality (IAQ) management, focusing on sustainability and energy efficiency. Leveraging the principle of dilution, outdoor airflow can be adjusted dynamically to balance energy consumption and air quality. The system uses a predefined control algorithm to determine the optimal mix of outdoor and recirculated air based on the concentration of particulate matter or carbon dioxide in the indoor environment. Users can customise the system's operation based on their IAQ requirements, ensuring efficient ventilation while minimising energy usage. This low-cost solution aims to tackle challenges associated with IAQ, energy efficiency, and sustainability that cannot be accomplished by traditional heating, ventilation, and air conditioning (HVAC) systems. Instead, integrating decentralised air purification technologies into building design and urban planning initiatives, indoor pollutants can be removed while minimising operational costs and environmental impact. City planners can now better prioritise IAQ and energy efficiency from the outset, ensuring that future developments contribute to healthier, more livable communities. Public health, well-being, environmental sustainability, and climate resilience can be strengthened. This technology is best suited for retrofitting air conditioning systems in small to medium-sized residential care facilities and commercial buildings. This technology uses IAQ management to maintain consistent air quality, tailored to individual rooms or zones. With customisable airflow rates and purification levels, IAQ can be more effectively managed across the entire building. Additionally, integrating the Dilution Air Processing Unit (DAPU) enhances energy efficiency through process integration, engineered air psychrometry, and real-time monitoring and control. This significantly reduces energy consumption and operational costs compared to conventional HVAC systems. The novelty of this technology lies in its comprehensive approach to IAQ management, integrating engineering principles with advanced technologies to deliver tailored solutions for various building needs. Key features and performance data of DAPS include: Customisable fresh air intake: Gradually adjusts fresh air intake to maintain target PM1.0/PM2.5 levels. Activates 100% fresh air only when PM levels reach user-defined critical thresholds. Improved particle reduction efficiency: At a baseline ventilation requirement of 33% fresh air, DAPS reduces PM2.5 by 33%, compared to only 21% with traditional ACMV systems. At 100% fresh air, DAPS reduces PM2.5 by 79%, whereas traditional ACMV systems achieve only 51%. Better performance compared to air purifiers: Provides 10% higher PM2.5 particle reduction efficiency than standard air purifiers in similar room settings. Air purifiers do not meet SS554 fresh air requirements for buildings. Energy efficiency: When coupled with Dilution Air Processing Unit (DAPU), DAPS consumes 25% to 34% less energy across all fresh air settings than traditional ACMV systems. Critical environments such as hospitals and laboratories Commercial buildings requiring zone-level or room-level IAQ control Healthcare isolation and treatment facilities Hot-desking areas in airport terminals Hot-desking areas in shopping malls     Optimises energy efficiency by identifying the ideal fresh air percentage to achieve the desired air quality, ensuring energy savings and improved IAQ. Adapts purification levels in real-time to minimize unnecessary energy use while maintaining optimal air quality. Mitigates retrofitting issues for existing buildings by setting up easy-to-implement real-world examples. Incorporates advanced dynamic features that meet SS554 standards and outperform existing air cleaning technologies, including air purifiers and HEPA filters. Adopts a pollution-free, environmental-friendly approach for indoor air quality, aligning with global energy and environmental goal. The technology owner seeks to collaborate with: Building and transport system integrators to drive widespread adoption of DAPS. Healthcare institutions looking to upgrade their ventilation systems to reduce respiratory illnesses among vulnerable occupants. AI-based statisticians to analyse correlations among various factors and develop predictive models for reducing the spread of airborne diseases using DAPS data-driven systems. By integrating engineering, health sciences, and data science, the technology owner aims to develop comprehensive healthcare solutions for future advancements. Dilution ventilation, Air purification, Clean air technology, Indoor air quality management, Outdoor/ Fan Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Sound Wave Filtration: Enhancing HVAC Efficiency and Air Quality
Facing the dual challenge of high energy consumption and the need for effective air purification in urban environments, this solution optimizes air filtration in HVAC systems. By employing advanced sound wave technology, the specialized emitter agglomerates fine airborne particles, making them easier to capture and significantly reducing the pressure drop across air handling units. This method not only lowers energy usage but also extends filter lifespan, cutting operational costs and maintenance needs. Ideal for building operators and industries that prioritize energy efficiency and superior indoor air quality, such as commercial real estate, hospitals, and manufacturing facilities, this system meets stringent G4 filtration standards and achieves performance levels equivalent to MERV 13 and MERV 14 filters.  The technology presents a cost-effective solution that significantly enhances HVAC performance and air quality, positioning itself as a sustainable investment for facilities dedicated to optimizing operational efficiency and environmental health. It improves motor energy consumption by up to 45%, while also enhancing air quality and reducing operational costs in HVAC systems. The technology owner is actively seeking collaboration partners for research and development, as well as opportunities for test-bedding within the HVAC systems field to enhance indoor air quality. Patented Emitters: Positioned along the edges of the system’s frame, these emitters work in tandem with the filter core to reduce pressure drop and enhance filtration efficiency. By altering the path of particulate matter (PM) using sound waves, the system requires less fan power to deliver the same volume of clean air, resulting in significant energy savings. Filter Media: High-quality synthetic media designed with environmental sustainability in mind. Efficiency: G4-rated performance, with MERV 13/14 efficiency validated through rigorous testing. Healthcare: Ensure sterile environments with advanced air purification and energy Saving capabilities Entertainment, Hospitality, and Education: Reduce energy consumption and improve air quality for public spaces. Construction and Real Estate: Improved HVAC performance in commercial buildings. Data Centre: Demanding Eco-energy solutions to enhance CRAC, Fan Wall, HVAC system energy reduction. Manufacturing: Efficient air filtration in industrial settings. The global market for advanced air filtration systems is robust, valued at approximately USD 4 billion and experiencing rapid growth. These systems enhance filtration efficiency by 50% and reduce pressure drops by up to 70%, significantly improving HVAC performance and energy savings. They also allow fan motors to lower energy consumption by up to 50%, maintaining optimal air quality. With an 80% increase in filtration efficiency, these technologies effectively capture more airborne pollutants, offering superior air purification compared to similar market solutions.  This advanced air filtration technology significantly outperforms traditional systems by utilizing sonic vibration to extend the travel distance of airborne particles, enhancing their capture by filter fibres for a 50% boost in filtration efficiency. Additionally, it reduces pressure drops across air handling units, enabling up to 50% energy savings and lowering operational costs while supporting sustainability goals. The UVP lies in its patented sound wave technology that uniquely alters the path of particulate matter, delivering unmatched performance and energy efficiency. This makes the system versatile for use in diverse settings like hospitals, data centres, and commercial buildings. energy saving, hvac, air quality, esg, green building, air filtration, carbon emission, filtration Environment, Clean Air & Water, Filter Membrane & Absorption Material, Sustainability, Sustainable Living
Compact Spectrometry-Based Electronic Nose for Odour Detection
With increasing discoveries of new pollutants being detrimental to human health and the environment, there have been an increasing scrutiny of air pollution, industrial emission and air quality through tighter government regulations. With the increasing importance to detect different combination of analyte concentrations within an area, there is a growing demand for electronic olfactory system. Laboratory multi-analyte analysis method, like gas chromatography and mass spectrometry (GC/MS), provide high accuracy and selectivity but is time consuming, complex and not portable. Comparatively, industrial gas sensors, like micro-electromechanical systems (MEMS), are portable and simple but lack the selectivity of chemical substances and do not operate in real-time. The technology owner has leveraged on Field Asymmetric Ion Mobility Spectrometry (FAIMS) with a proprietary odour analysis system built on extensive experimental data to develop a compact, lightweight spectrometer for real-time multi-analyte analysis.  While this system may not fully match the performance of laboratory-grade mass spectrometry, it offers higher accuracy and selectivity than industrial gas sensors, enabling continuous, non-invasive analysis on the go. Notably, it excels in ammonia detection by achieving highly sensitive measurements ranging from sub-ppb to several hundred ppb. The technology owner is currently seeking industrial collaborators looking to explore digital olfaction devices for multi-analyte analysis application, particularly for ammonia-based detection, which leverages on the technology’s high selectivity and sensitivity. The device solution utilises FAIMS (Field Asymmetric Ion Mobility Spectrometry), which separate individual gas molecules via ionisation and specialised electric field and identifies them via electrical signals. Previously limited to only specialised environments, the technology owner has leveraged on proprietary algorithm of data analysis to develop a deployable device for broader usability. The key features include: High sensitivity and selectivity Battery powered for portability to deploy device (as an IoT) on site Compact formfactor (~3kg) with current prototype being 120mm (H) × 220mm (W) × 160mm (D) User friendly with no in-depth technical expertise required Real-time multi-gas analysis for quick and actionable insights, such as pattern recognition, early hazard detection and predictive maintenance Continuous, non-invasive sample delivery design using integrated pump design for contactless analysis Provision of cloud data transmission, computing and visualisation for horizontal usage across various application Easier maintenance due to fewer consumables and ease of replacement With the capability of deployable laboratory multi-analyte detection and analysis, the technology solution is designed to enable various odour-centric application across different industries such as: Environmental Monitoring for Safety and Health: Monitoring and mapping of ambient air pollutants, fire hazard monitoring and prediction, cleanroom contamination and visualisation, and odour monitoring in confined environments (e.g. cabin air, tunnel) Gas/Solvent-based Industrial & Manufacturing Processing: Monitoring, leak detection and mapping (e.g. for ammonia energy source), odour detection and control, and solvent analysis and contamination evaluation Food & Beverages: Maintenance of food hygiene, freshness evaluation and control, authenticity assessment of products, and contamination detection and mapping Logistics: Monitoring of perishables, and packaging defect detection Healthcare and Wellness: Non-invasive bio-gas analysis for disease diagnostics, management of chronic conditions, and effectiveness testing Agriculture: Quality assessment of produce, and predictive maintenance of optimal growth conditions The global electronic nose (e-nose) market is expected to be valued at US$972 million in 2024 and is projected to reach US$1,617 million by 2029, exhibiting a CAGR of 10.7% during the forecast period. Across application segments within the global e-nose market, medical application is projected to be the largest market share in 2029 of US$665 million while environmental monitoring application is expected to exhibit the largest CAGR of 12.1% during the forecast period of 2024 to 2029. The technology solution is designed to leverage the advantages of FAIMS and MEMS technology to develop the odour sensor system capable of high sensitivity and selectivity while being compact, portable and user friendly. With the continuous real-time multi-gas analysis on site, the system has the capability to provide AI based analytics, such as odour profiling and predictive maintenance, for quick insightful decision-making. This technology will provide the future integration to a non-invasive IoT device across various use-cases, from potentially detecting new hazardous odours for public safety to disease diagnostics via breath analysis. Real-Time Spectrometry, MEMS, Field Asymmetric Ion Mobility Spectrometry (FAIMS), Air Quality, Ammonia Monitoring and Detection, Process Monitoring, Bio-gas Diagnostics, Food Inspection, Chemical Substance Detection, Volatile Organic Compounds (VOC), Leak Detection Electronics, Sensors & Instrumentation, Green Building, Indoor Environment Quality, Infocomm, Smart Cities, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Hybrid Photocatalytic Film with Enhanced Antibacterial and Antiviral Properties
In recent years, particularly after the pandemic, the demand for effective antibacterial and antiviral solutions has surged. These solutions are increasingly utilized in diverse settings, including residential spaces, educational institutions, public areas, and transportation systems. Thus, it is anticipated that the demand for antimicrobial and antiviral products will continue to grow. Despite their utility, traditional antimicrobial and antiviral technologies have notable limitations. Copper, for example, offers a strong immediate antimicrobial effect but suffers from reduced durability due to oxidation and is effective only within a limited range. Silver ions are more durable and applicable to a wider range of surfaces but lack the immediate efficacy of copper. Photocatalysts, while more durable than both copper and silver, are heavily dependent on the availability of a suitable light source. These challenges underscore the need for a technology that is fast-acting, durable, and versatile across various environments. To address these challenges, the technology owner has developed a hybrid photocatalytic film with enhanced antibacterial and antiviral properties. This solution combines the photocatalytic activity of copper suboxide and titanium dioxide with visible light responsiveness to effectively denature membrane proteins on virus surfaces, thereby reducing their infectivity.  Additionally, the technology incorporates a film-based manufacturing process, providing a more efficient alternative to traditional paint-based approaches. The technology owner is actively seeking R&D collaborations and licensing opportunities with industry partners interested in implementing this film in various applications. The technical features and specifications are listed as follows: Dual Antiviral Effects: Antibacterial effect by copper suboxide and photocatalytic effect by visible light of copper suboxide-supported carrier (titanium dioxide) Reduces Infectivity: Denatures membrane proteins on virus surfaces, significantly lowering their infectivity Visible Light Activation: Functions effectively under visible light (including ultraviolet rays), ensuring antiviral performance even indoors Superior Performance: Provides immediate antiviral effects and exceptional durability, outperforming traditional technologies Transparent Design: A thin film preserves the original appearance of the underlying material Shorter Construction Time: It eliminates the need for on-site formulation, curing, odor control, drying, and coating management of paints Versatile Application: Compatible with a wide range of substrates, enabling broad use across various settings This film is designed for a wide range of products and applications, particularly those requiring high hygiene requirements. Key applications include: Home Appliances: Lighting fixtures, ventilation fans, furniture, and other household equipment Public Spaces: Frequently touched surfaces such as elevator buttons, door handles, etc. Medical and Healthcare Facilities: Hospital trays, walkers, toilet handles, etc. Effective in Light and Darkness: Suppresses bacteria and viruses even in the absence of light Continuous Hygiene Maintenance: Keeps surfaces consistently hygienic, reducing the need for frequent cleaning with alcohol and other disinfectants Aesthetic Preservation: Retains the original appearance and design of the surface or space where it is applied antibacterial, antiviral, Film, photocatalyst, cuprous oxide, visible light Materials, Composites, Chemicals, Coatings & Paints, Environment, Clean Air & Water, Sanitisation, Green Building, Indoor Environment Quality
Smart Fish For Oceanic Microplastics Detection In Coastal Areas
Microplastics contamination in the natural water bodies, which are resulted from disintegration from plastic waste, has raised public concern due to high level of fragmentation and disturbance in ecosystem. Every year, 11 million metric tons of plastics enter our ocean on top of the estimated 200 million metric tons that currently circulate our marine environments. This technology is a 'smart fish' that will be deployed in water bodies to allow for autonomous sampling using remote sensing and GPS technology, real-time detection of contaminants and a contaminant treatment unit to mitigate microplastic contamination. The prototype is currently employed in project to provide real-time sampling, detection and characterization of microplastics and aircraft tire wear particles in coastal areas of Lantau Island near Hong Kong International Airport. This prototype includes the following components: Sampling unit Filtration unit which uses a stainless steel membrane Two staining chambers for microplastics and aircraft tire wear particles Image capturing system for quantification of microplastics User-friendly mobile app to visualize the real-time data Treatment unit to breakdown microplastics and aircraft tire wear particles through an oxidation process Waste tank to store residual waste which will be removed when the smart fish returns to base The operation of the prototype will be controlled by computer programmes. Solar panels will be installed on top of the prototype for sustainable energy production and consumption. The potential applications include environmental monitoring, where the technology can be used to quickly and accurately detect microplastics in oceans, rivers, lakes, and drinking water sources. This helps track pollution levels and identify contaminated areas. For marine life protection, detecting microplastics in water helps in understanding the scale of pollution affecting marine ecosystems. Conservationists can use this technology to monitor the impact of plastic on marine organisms and habitats. In industries that manufacture or use plastics, the technology can be utilized to monitor production processes, ensuring minimal microplastic leakage into the environment. Traditional microplastic detection methods often require complex laboratory equipment such as infrared spectroscopy, scanning electron microscopes, or filtration techniques, which are time-consuming and require samples to be sent to labs. This technology, which uses a proprietary staining method for microplastic detection enables real-time on-site detection, eliminating the need for specialized labs and reducing turnaround time for results. Smart Fish, Aircraft Tire Wear Particles, Real-Time Microplastic Detection Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Environmentally-friendly Silica-based Algicidal Hydrogel for Algal Bloom Control
Harmful algal bloom (HAB) releases toxins that can contaminate drinking water, causing illness for animals and humans. The National Centers for Coastal Ocean Science (NCCOS) estimated that the annual economic impact of HABs in the US is $10-100 million. Physical and chemical methods can be employed to deal with these, but they have several limitations. This technology is a 3D structure environmental friendly silica-based hydrogel, which has long-term effect on algal bloom control as well as pathogen control. It is capable of long-acting sustained release and precision dosing. This allows it to effectively replace the existing heavy metal algaecides on the market and solve the problem of indiscriminate dosing of algaecides, antibiotics and other additives in aquaculture. This in turn reduces the amount of drug residues and heavy metal accumulation of the aquatic end-products. Beyond aquaculture, this technology is also applicable for ensuring the health of ornamental aquariums, such as infection of pathogens as well as preventing algal bloom in natural water bodies. This technology consists of a novel composite material with algicidal effects and a real-time monitoring system. Novel Composite Material Sustained release effect which releases active ingredients into water for more than one month (customizable) Comparable algicidal rate with best-performing commercially available algaecides Silica-based porous material No harmful residues, broken down into sand at the end of its life cycle Does not contain heavy metals or antibiotics Real time monitoring system Real-time data on residual chlorine, temperature and pH Modifiable based on application scenario The technology has been employed for water quality maintenance in salt water reservoirs, large scale shrimp and fish ponds, and also for domestic applications in aquarium water quality. In general, it can be used in urban and rural water bodies, fish tanks, swimming pool or seafood restaurants. The estimated market size for solutions dealing with HABs is 68.56 US Billion. This breakthrough technology suitable for the aquaculture industry, aquarium industry and natural water protection area is poised to disrupt this industry. Current methods of algal bloom treatment: Most commercially available algicides only last 1-3 days Natural water bodies employ engineering methods that are costly and require a long time to take effect Home-based aquariums have to perform water changes, which takes time and may harm the fish The aquaculture industry uses algaecides that contain heavy metals and antibiotics, which leave toxic residues in the fish This technology: Provides long acting sustained release and precise dosing to save time, manpower and cost Contains environmentally friendly materials not harmful to marine life and marine ecosystem Can be used as a preventive measure rather than curative Incorporates digitized management to reduce manpower requirements Algal Bloom Control, Algicide, Long-term effect, Environmentally friendly Environment, Clean Air & Water, Biological & Chemical Treatment, Sensor, Network, Monitoring & Quality Control Systems
Real-Time IoT Water Monitoring and Treatment for Remote Communities
Access to clean and safe drinking water is a critical issue in many parts of Asia, particularly in rural and less accessible regions. A large portion of the population relies on surface or groundwater for daily consumption, yet as many as 240 million people are exposed to water that exceeds World Health Organization (WHO) safety limits. The increasing contamination of water sources due to anthropogenic activities such as industrial pollution, agricultural runoff, and inadequate sanitation has made water treatment essential. However, most portable water treatment systems currently available lack a vital feature: real-time monitoring of the treated water’s quality. This leaves consumers uncertain about whether the water they are drinking is truly safe, especially in unpredictable environments where water quality can fluctuate.  This technology combines IoT technology with water monitoring, offering real-time monitoring and feedback on water quality. This portable system allows users to remotely control and manage the treatment process, ensuring operational efficiency even in rural areas. With water-saving features and a low-maintenance design, it provides a sustainable and reliable solution for safe drinking water in remote and resource-limited regions.  The technology owner seeks collaboration with end users like rural communities, humanitarian organizations, and government agencies focused on water quality. They are also looking for test-bedding partners such as environmental research institutions and NGOs, and solution providers like manufacturers and IoT developers interested in sustainable water treatment and international expansion.  Portability: Compact design, easy to transport and deploy in remote locations. Remote Control: Fully controllable via mobile phone, allowing users to manage water treatment operations remotely.  Real-Time Monitoring: Continuous water quality measurement with real-time data accessible through a mobile app.  Innovative Cleaning System: Advanced cleaning mechanism reduces maintenance and extends operational life.  Modular & Scalable Design: Customizable system modules that can be scaled up or down based on user requirements and water demand.  Off-Grid Applications: Ideal for remote areas without access to conventional water treatment infrastructure.  River/Surface/Groundwater Treatment: Suitable for monitoring treated water from various water sources such as rivers, lakes, and wells.  Rainwater Harvesting: Enhances the usability of harvested rainwater by ensuring its quality through data monitoring.  Consumer Market: Designed for rugged or rural terrains, catering to campers, adventurers, and outdoor enthusiasts.  Military and Outdoor Activities: Useful for army camps and field operations, providing data for safe drinking water in challenging environments. Agriculture Irrigation: Adaptable for small-scale agricultural use to provide purified water for crops irrigation or livestocks.  Real-Time Water Quality Monitoring: Provides continuous feedback on treated water quality, ensuring consumer confidence and safety.  IoT-Enabled Remote Control: Users can remotely control and monitor the system via mobile devices, offering convenience and flexibility.  Water-Saving Backwash Feature: Optimized design reduces water wastage during backwash, promoting sustainability and efficient water use.  Predictive Maintenance Alerts: Integrated system alerts users for timely maintenance, reducing downtime and ensuring consistent operation.  Maintenance Alerts: Integrated system alerts users for timely maintenance, reducing downtime and ensuring consistent operation.  Enhanced Consumer Confidence: The system's real-time monitoring and remote-control features offer greater peace of mind compared to conventional water filtration systems (lacking a monitoring system).  Real-Time Data Acquisition: For monitoring and prediction of water consumption patterns and filter performance.  portable water treatment, water treatment, pollution detection, water, detection, iot, water quality Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems, Sustainability, Sustainable Living