innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Cross Platform Web-Based Remote Monitoring and Control Solution (IOJunction)
IOJunction is a revolutionary remote monitoring and control system designed to address several critical challenges faced by various industries. Problem Solved:  Centralized Monitoring: Many customers struggle with the lack of a unified platform for real-time monitoring of devices, leading to reliance on manual interventions and multiple scattered tools. IOJunction consolidates the management of IoT devices across diverse locations into a single interface, streamlining operations.                        Data Analysis Challenges: Businesses often find it difficult to extract meaningful insights from collected data due to time-consuming manual analysis. IOJunction automates this process, enabling users to interpret trends and identify potential issues effortlessly.                                                                      Data Visualization and Alerts: Users frequently lack intuitive interfaces for visualizing device data or receiving timely notifications. IOJunction provides customizable dashboards and configurable alerts, allowing proactive management of potential problems. Target Market: IOJunction caters to a wide range of sectors including facility management (monitoring HVAC, lighting, energy consumption), industrial operations (predictive maintenance), agriculture (environmental monitoring), and smart cities (traffic flow and air quality). Market Need: The technology addresses a significant gap in the marketplace by offering an integrated solution that enhances efficiency, reduces operational costs, and improves decision-making through advanced data visualization and automation. This positions IOJunction as a valuable asset for organizations seeking to optimize their monitoring processes and resource management. The technology owner is seeking collaboration with system integrators, facility management teams, IoT companies, and startups. IOJunction boasts several key technical features that enhance its functionality and usability in remote monitoring and control applications. Cross-Platform Scalable Web Service: Built on Microsoft .NET 7, IOJunction operates seamlessly on Windows, Linux, and Raspberry Pi platforms. It has been successfully deployed in various environments, including Amazon Cloud and local servers, showcasing its flexibility and scalability for different applications. Logging and Message Relay: IOJunction efficiently manages IoT devices by collecting real-time data via HTTPS RESTful API. It performs real-time analysis and publishes results to users through secure WebSocket connections while relaying user commands to devices via MQTT. Customizable Data Analysis: Users can perform mathematical functions and time series calculations directly through a web interface, allowing tailored data analysis based on specific needs. Customizable Dashboards: Administrators can create user-specific dashboards that cater to individual or group requirements, enhancing user experience and operational efficiency. Email and Telegram Alerts: IOJunction enables users to configure alerts based on various events, with customizable messages that can include specific device attributes and timestamps. External Interface Capability: The system integrates with higher-level IOJunction installations and Building Management Systems (BMS) via BACnet protocols, facilitating centralized monitoring across multiple sites and enabling comprehensive data analysis for optimization. These features collectively position IOJunction as a versatile solution for diverse industries, enhancing monitoring capabilities while simplifying user interaction with IoT systems. IOJunction technology can be deployed across various industries, offering diverse applications that enhance monitoring and control capabilities. Industries and Applications: 1.   Facility Management: HVAC systems for optimal climate control. Lighting systems to improve energy efficiency. Energy consumption tracking to reduce costs. Fire safety and security systems for enhanced safety. 2.    Industrial Operations: Manufacturers can utilize IOJunction for: Machine monitoring and predictive maintenance to prevent downtime. Process control and optimization for improved productivity. Real-time data analysis to ensure quality control. 3.    Agriculture: Farmers can apply IOJunction for: Environmental monitoring (temperature, humidity, soil moisture). Irrigation control to optimize water usage. Livestock monitoring for better management. 4.    Building Automation: With BACnet integration, IOJunction facilitates: Centralized control of building systems (HVAC, lighting, security). Real-time visualization of energy inefficiencies. Automated alerts for equipment malfunctions. 5.    Smart Manufacturing: The technology supports: Predictive maintenance of production machines. Process data analysis to enhance quality control. 6.    Additional Potential Users: Data centers for critical infrastructure monitoring. Renewable energy management for solar panels and wind turbines. Smart cities for traffic flow and air quality monitoring. Marketable Products Based on this technology, products could include integrated monitoring solutions, customizable dashboards, and automated alert systems tailored for specific industry needs, enhancing operational efficiency and decision-making capabilities. IOJunction advances current remote monitoring and control systems with a UVP that addresses key limitations comprehensively. By combining ease of use with advanced features, IOJunction enhances operational efficiency across multiple industries and overcomes the shortcomings of existing solutions—such as fragmentation, limited flexibility, and high complexity—positioning itself as an effective, scalable choice. It improves upon current technologies: Unified Platform: Unlike existing solutions that require managing disparate systems for data acquisition, analysis, and alerting, IOJunction provides a centralized platform, simplifying workflows and enhancing efficiency. Flexibility: IOJunction supports various industrial communication protocols, allowing seamless integration with a wide range of devices and systems. This adaptability makes it suitable for diverse applications, from building automation to industrial monitoring. Scalability: The technology is designed to operate across different platforms, including Windows, Linux, and Raspberry Pi. This versatility enables deployments from small setups to extensive building automation systems without compromising performance. Customization: Users can create tailored dashboards and configure alerts based on specific requirements. This level of customization empowers users to proactively address issues and enhances overall operational efficiency. Ease of Use: With a user-friendly interface, IOJunction is accessible to users with varying technical expertise, contrasting sharply with complex enterprise-grade IoT platforms that often require specialized knowledge. IOT, Remote Monitoring and Control Green Building, Sensor, Network, Building Control & Optimisation, Infocomm, Internet of Things, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Rapid Formalin Test Kit
The formalin test kit is a paper-based device suitable for detection of formalin contamination in paints, coating material such as pressed wood and plywood, fresh food such as meat, vegetables and fruits with 99.9% sensitivity & specificity, ensuring accurate results without interference. The test kit is quick and easy to use, with rapid results making it accessible for general use. The tech provider is looking for licensee to license the technology. The Formalin test kit consists of three main components: (1) paper-based testing device, (1) control solution bottle, and (3) sample testing vial. The test kit provides rapid analysis and is simple to use by only dropping the sample solution obtained from the reaction vial onto the portable paper-based device (T Zone) to allow the reaction, while the control solution is added to the C Zone to verify the device's validity. After 5 minutes, the test result can be read based on the colour diameter and comparing it to the colour chart indicated on the device to see if the tested material/food is safe. This Formalin Test Kit can be applied in the food, coatings industry to verify the safety of products before use and exporting. It is also useful for public health agencies, testing companies, both governmental and private, as well as for general consumers who wish to conduct testing. A rapid paper-based formalin test kit with innovative detection format by reading the colour diameter for effectively detection of formalin contamination without interference from the food/material background colour. Formaldehyde, Test Kit, Formalin, Coating, Food additive, Paint, Toxin Healthcare, Diagnostics, Environment, Clean Air & Water, Biological & Chemical Treatment, Foods, Quality & Safety
High-Performance Boron Absorbents With Flexibility and Minimal Environmental Footprint
Boron is an essential micronutrient necessary for the growth and development of plants, animals, and humans, while also playing a critical role in industries such as manufacturing, agriculture, and semiconductors. However, while beneficial in trace amounts, excessive boron levels can be toxic. High concentrations in drinking water pose significant health risks, particularly to reproductive and developmental systems, while boron contamination in industrial water supplies can degrade process efficiency and product quality. Current methods for boron removal, such as reverse osmosis and ion exchange, face significant limitations. Reverse osmosis struggles to remove boron efficiently, especially in seawater desalination, often requiring multiple stages and high energy consumption to achieve acceptable levels. Ion exchange resins pose low loading capacity and require massive harsh chemicals for regeneration.  The proposed boron absorption technology provides a solution that efficiently removes boron from diverse water sources, including seawater and wastewater. It effectively reduces boron levels to meet stringent standards, such as drinking water limits of less than 0.5 mg/L. The technology aligns with sustainability goals, consuming fewer chemicals and exhibiting strong recovery stability. Additionally, the proposed absorbent is flexible, customizable and compatible with various water treatment applications. The technology owner seeks partnerships to integrate this solution into existing water treatment systems or collaborate on industrial-scale demonstration projects to address boron contamination across multiple sectors. High Efficiency: Effectively reduces boron concentrations in various water sources, including seawater and wastewater, meeting stringent standards (e.g., <0.5 mg/L for drinking water). Sustainability: Consumes trace chemicals during the process and offers robust regeneration stability. Flexible & Customizable: Sponge-like composite, elastic and flexible, allowing easy scalability for large-scale applications. Cost-Effective: The technology lowers operational costs due to its high performance and reduced chemical usage. Desalination Plants: Particularly useful in seawater desalination, where boron concentrations must be reduced to meet drinking water standards. Drinking Water Systems: Ensures that water meets strict regulatory standards. Industrial Wastewater Treatment: Removes boron from industrial effluents, especially in sectors that release boron-laden waste, ensuring compliance with environmental regulations. Semiconductor Industry: Used to purify water in semiconductor manufacturing, where trace amounts of boron can affect production quality. Superior Boron Removal Efficiency: Achieves boron concentrations below 0.5 mg/L, meeting stringent drinking water standards, which is a challenge for existing methods like reverse osmosis and ion exchange. Cost-Effectiveness: The high-performance absorbent minimizes chemical input during regeneration, contributing to both cost reduction and sustainability. Robust Recovery and Stability: Exhibits strong regeneration stability over >15 cycles, maintaining its high performance. boron removal, column adsorption, low environmental footprint, flexible, sustainable Environment, Clean Air & Water, Filter Membrane & Absorption Material, Sustainability, Sustainable Living
Oily Wastewater Treatment Technology using High-Performance Oil-Degrading Microorganisms
The increasing use of fats and oils in food processing has led to higher concentrations in industrial effluents, overwhelming traditional wastewater treatment systems and clogging sewer pipes, which disrupts business operations. Commonly used methods like pressurized floating separation are limited and often result in incineration, increasing waste management costs. Rising treatment costs, odor control, and waste management remain significant concerns for factory operators. This technology uses an innovative "organic treatment method" with powerful microorganisms that decompose fats and oils directly from wastewater. These microorganisms can rapidly degrade various fats and oils, including plant, animal, and fish oils, as well as trans fatty acids, even at concentrations over 10,000 mg/L, using a microbial symbiotic system. Efficiently degrade various fats and oils, including plant, animal, fish oils, as well as trans fatty acids. By decomposing fats and oils directly, it reduces the need for physical separation and incineration, cutting down on industrial waste management costs. This approach also supports sustainable waste reduction and mitigates the risk of clogged sewer pipes. Technology has demonstrated the stable performance of oil decomposition in wastewater throughout a year in a field test at a food oil factory.  The technology owner seeks collaboration with food, oil, and other plants with oily wastewater and wastewater treatment facility providers looking for organic solutions for end users. The technology integrates a decomposition tank with activated sludge treatment, where fats and oils are directly degraded and eliminated by the microorganisms. This setup, positioned upstream of the activated sludge tank, simplifies the overall waste treatment process compared to conventional methods, significantly reducing both the initial construction costs for new facilities and the ongoing costs of treating oily sludge. To ensure stable decomposition, a daily addition of the fats and oils-degrading microorganisms at 1/1000 of the wastewater volume is recommended. This on-site equipment, replenished monthly with microbial inoculate, an activator, and nutrients, amplifies the microorganisms 100-fold before introducing them into the decomposition tank, allowing for efficient and manageable wastewater treatment. The technology can be applied in fields that require oil and fat degradation via a sustainable solution. Food Industry: Treatment for food processing plants with high oil and fat content, effective for managing fatty and oily waste from food related garbage (vegetables oils and animal fats). Wastewater Treatment facilities: Wastewater treatment systems looking for sustainable fat and oil degradation technologies. Cosmetics: Treatment of oils, fat, waxes or for cleaning operations. The global market of fats and oils processing is estimated to be 1 trillion USD. Degradation Capability: This approach uses a single decomposition tank upstream of the activated sludge treatment to directly degrade wide range and high concentrations of both animal fat and vegetable oils. Cost Efficiency: The simplified treatment process reduces the need for extensive facility construction and lowers ongoing operational costs.  Reduced Environmental Impact: By eliminating fats and oils at the microbial level, this method significantly reduces the volume of industrial waste, aligning with sustainable waste management goals. Proven Performance: Demonstrated year-round stable performance in field tests at a food oil factory, successfully substituting traditional pressurized floating separation facilities and reducing wastewater treatment costs. Environment, Clean Air & Water, Biological & Chemical Treatment
Photonic Technologies For Real-Time Hydroponic Crop Health And Nutrient Supply Monitoring
Indoor vertical farming is pivotal for addressing future food challenges, particularly in arable land-scarce countries. One common method is hydroponics, which uses mineral and nutrient solutions in a water-based platform to grow crops. To optimize the crop yield and to reduce the man work hours required, it is important to automate crop health monitoring and replenishing of specific nutrients. Currently, these tasks are labour-intensive and subjective. While some imaging techniques exist for detecting plant stress and chlorophyll monitoring, a complete system covering all aspects is still lacking. For nutrient analysis, tools like pH and electroconductivity meters can only detect a change in the nutrient composition to start a feedback loop but are unable to determine the specific nutrient component or deficiency level. This technology is a comprehensive quantitative monitoring system integrating imaging spectroscopy and laser-based elemental spectroscopy to quickly identify the crop growth stages, alert crop stresses (tested on several lettuce species) and quantify specific nutrient levels in the nutrient supply. This allows for reduced man work hours and improvement of crop yield. Complete crop health monitoring through combined leaf, root, and nutrient supply monitoring, with automated replenishment Real-time in-situ component wise nutrient monitoring capability with high sensitivity (in ppb levels) enabling automated selective nutrient replenishing Non-invasive and non-contact, no sample preparation required Modular sub-systems allowing for easy integration with existing systems Machine learning capability for improved spectral library creation, enabling rapid and efficient monitoring   Applications validated at lab scale: Automated hydroponic crop monitoring in large indoor agricultural farms Inline, real-time nutrient monitoring of nutrient solutions Other applications tested at experimental POC scale and shown to be more rapid and accurate than existing methods: Real-time water quality monitoring Post-harvest quality determination of crops Trace elemental detection in body fluid   Offers full-spectrum monitrong for both crop health and nutrient supply, covering both leaf and root systems Enables automated, real-time nutrient replenishment with precise, component-wise monitoring at ppb sensitivity levels Features modular subsystems and easy integration with existing setups, supported by specific spectral libraries and machine learning for efficient monitoring and classification   Hydroponics, Nutrient Monitoring, Non-destructive Monitoring, Urban Farming, Indoor Farming, Spectroscopy, Imaging Life Sciences, Agriculture & Aquaculture, Foods, Quality & Safety, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Solar Powered Portable Water Purification System
Access to clean and safe drinking water is essential for health, yet millions of people worldwide still lack this necessity. According to the World Health Organization (WHO), over 2 billion people globally use drinking water sources contaminated with feces, leading to severe health consequences. Unsafe water, along with inadequate sanitation and hygiene, is estimated to cause 485,000 diarrheal deaths each year. Water purification technologies face significant challenges, especially in decentralized systems lacking the efficiencies of large-scale operations. They often have a substantial carbon footprint due to energy-intensive processes and reliance on chemicals. Existing portable devices primarily use filtration and have a limited lifetime on-site, with little opportunity for cleaning to restore its performance.  Developed by a research team, this technology effectively addresses the above challenges by employing electrochemical methods that generates strong oxidizing agents to kill micro-organisms present in raw water and potentially degrade organic pollutants that conventional portable reactors cannot remove via filtration. Due to its working mechanism, the device is self-cleaning and does not need regeneration. By harnessing solar energy and activated carbon, this chemical-free purification approach is not only environmentally friendly but also perfectly suited for deployment in remote areas, developing countries, and disaster-stricken zones where traditional water treatment infrastructure is lacking. The technology owner is looking for collaborations with local SMEs to co-develop scaled systems and deploy it through disaster relief organizations, government agencies and non-profit organizations in selected developing countries.  Power Source: Solar-powered, enabling operation in off-grid and remote areas, resulting in reduction of operational costs and ensures continuous, sustainable water purification Electrochemical Reactor: Anode: Mixed Metal Oxide (MMO) anode which generates strong oxidizing agents to degrade certain recalcitrant pollutants Cathode: Activated Carbon, enhancing contaminant removal through absorption and electrochemical processes Chemical-Free Operation: Eliminating the need for chemicals, making it more sustainable, safer and more cost effective Contaminant Removal: Organic Contaminants: The technology can effectively remove organic pollutants, with 65% of an initial 50 ppm phenol concentration being removed within 60 minutes proven in a prototype system. Coliform Reduction: Electrochemical treatment rapidly reduces coliform levels to meet water reuse guidelines of less than 10 CFU/100 mL in just 3 minutes. Biochemical Oxygen Demand (BOD₅): The system is capable of bringing BOD₅ levels within guideline standards in as little as 15 minutes. Water Treatment: Provides clean water in areas without conventional water treatment infrastructure  Humanitarian Aid: Supports disaster relief and NGOs in emergencies like natural disasters and refugee camps. Rural Development: Serves remote and rural areas, especially in developing countries without centralize facilities. Mobile units: Portable purification for troops in harsh or remote environments, ideal for off-grid communities, emergency preparedness and mobile operations needing reliable water purification. Sustainable Power Source: Solar-powered, reducing reliance on external energy sources and ensuring operation in off- grid locations Chemical-Free Operation: utilizes electrochemical methods, environmentally friendly Effective Contaminant Removal: Capable of degrading recalcitrant pollutants and organic compounds Environment, Clean Air & Water, Sanitisation
Smart Imaging-Based Water Seepage System for Building & Construction Industry
In the construction sector, manual inspections have traditionally been the primary method for detecting water seepage surface defects, a mandatory requirement for construction projects. However, these inspections often suffer from the inherent subjectivity of human judgment, leading to potential inconsistencies and inaccuracies. To overcome these limitations, a handheld water seepage detection system was developed and rigorously tested in collaboration with the Building and Construction Authority (BCA). This innovative system is designed as a portable, intelligent alternative to traditional methods, aiming to enhance the objectivity and reliability of water seepage detection. The system utilizes advanced Long-Wave Infrared (LWIR) thermal sensing technology to accurately detect temperature variations indicative of water seepage. Unlike manual inspections, which can be prone to error, this system offers precise differentiation between genuine water seepage defects and common artifacts found on construction sites, such as glue and paint. By minimizing false alarms, it provides a more dependable and efficient approach to identifying and addressing water-related issues. This advancement not only improves the accuracy of inspections but also ensures that potential water damage is detected early, reducing the risk of costly repairs and enhancing the overall integrity of construction projects.     1. The system uses a high-resolution OEM 640 x 512 Long-Wave Infrared (LWIR) thermal camera, accurately capturing subtle temperature variations, ideal for detecting water seepage. 2. An integrated HD RGB camera with an Infrared (IR) illuminator enables clear imaging in both normal and low-light conditions. This dual-sensor setup enhances inspection reliability by providing both thermal and visible-light data. 3. The system runs on a 10AH Lithium Polymer (LiPO) battery, offering long-lasting power for extended use. The battery is easily removable, allowing for quick replacement and minimizing downtime during field inspections. 4. Featuring an ARM-based single-board computer with 32GB SSD storage and 8GB DDR RAM, the system provides robust data processing. A 5-inch touch screen offers a user-friendly interface for real-time data management and image viewing. 5. The system includes Application Software with advanced image processing algorithms to enhance detection accuracy by reducing noise and emphasizing temperature contrasts.   The smart imaging-based water seepage detection system is highly effective for detecting water seepage in both completed and under-construction buildings, especially in areas with restricted access. It is particularly valuable for enclosed spaces, such as private residential buildings with hidden plumbing behind false panels, where traditional water tightness tests are less comprehensive due to accessibility limitations. The technology owner is seeking collaboration with companies in the building & construction and environmental services industries. An alternative technology to manual water seepage monitoring. Utilizes advanced LWIR thermal imaging and algorithms to precisely detect true water seepage, minimizing false positives. Enables non-invasive inspections, reducing the need for destructive testing and enhancing worker safety. Greater Efficiency by offering real-time data processing with immediate results, reducing inspection time. Portable design with easily replaceable battery allows for continuous use, optimizing field operations and increase productivity Able to detect water on surfaces of concrete and plastic material at distance of up to 3m. This is extremely helpful when the presence of water is unable to be verified by visual or touch. Equipped with automatic data logging function for future reference and traceability. Building Construction Authority, Long-Wave Infrared (LWIR), Water Seepage Infocomm, Video/Image Processing, Manufacturing, Surface Finishing & Modification, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Air Purification Technologies for Ensuring Pristine Air Quality on Ships
Maintaining clean air on ships is crucial for the health and well-being of passengers and crew, as well as for the proper functioning of sensitive equipment. Due to the structural specificity of ships and higher reliance on mechanical air conditioning than natural ventilation, addressing indoor air quality issues is particularly important. Advanced air purification solutions would be able to effectively address a range of airborne contaminants, including particulate matter, volatile organic compounds (VOCs), and biological pollutants, ensuring a safer and more pleasant environment on board. A Korean startup has developed an air sterilisation and purification system tailored specifically to the challenges of maritime environments that excels in delivering clean, safe, and compliant air quality solutions. They enhance health and safety, optimise operational efficiency, and contribute to a better overall experience for passengers and crew, while also meeting regulatory requirements and supporting environmental sustainability. The company is seeking collaborators from the maritime and built environment sectors, as well as HVAC and IoT companies, to expand their applications and explore integration of their technologies into existing HVAC systems. The technology consists of the following key features: A seamless three-step purification and sterilisation process using UV-C lamp, carbon filter, and HEPA filter Engineered housing design that increases air’s retention time, providing a wider and denser air distribution compared to a stand-type air purifier Utilises UV-C rays at a wavelength of 254 nm, ideal for disrupting the DNA and RNA of bacteria, without generating ozone Strong sterilisation capability through uniform dispersion of UV-C rays and a direct contact sterilisation method to maximise the effectiveness, achieving up to 99.8% removal of airborne viruses and bacteria Double filters remove up to 96.3% of major hazardous substance, including ammonia, acetic acid, acetaldehyde, toluene and formaldehyde  Can be retrofitted to existing diffusers The solutions have been successfully implemented on various types of ships and can also be applied to buildings, healthcare facilities or public areas on land where large gatherings occur. Potential applications include, but not limited to, the following: At sea: Ships (Existing / New) On land:  Healthcare facilities Educational facilities Commercial real estate Residential real estate Tailored for effective operations under the unique conditions found at sea Engineered housing design for enhanced air distribution and extended exposure time, allowing more thorough sterilisation of airborne particles  Enhanced health and safety contributing to the well-being and safety of passengers and crew Optimised operational efficiency leading to cost savings and improved reliability of critical ship systems Enhanced passenger experience by providing a more comfortable and pleasant on board environment Environment, Clean Air & Water, Sanitisation, Mechanical Systems, Sustainability, Sustainable Living
Autonomous Marine Pollutants Recovery Robot
Pollution in oceans and rivers is a global concern due to contaminants like oil spills and microplastics, which harm biodiversity. In response to marine pollutions, extensive human and technological resources are typically deployed to mitigate the situation, this includes absorbent, oil skimmer machineries, drones or vessels depending on the complexity of required clean-ups, resulting it being costly and time consuming. Designed and developed by a Korea-based startup, the technology proposed herein is a robot deployed onto the water surface to efficiently recovers pollutants autonomously with minimum human intervention. Unlike conventional pollution recovery equipment that uses additional devices connected by hoses, the robot combines the recovery of pollutant, transportation and storage of pollutants into a single robot device that can travel up to 1000 m range. The robot is equipped with a proprietary hydrophilic ratchet-based contaminant recovery technology, which generates a flow that sucks water through the movement of a hydrophilic material and controls the attachment and detachment of contaminants on the surface of the material by capillary force. This proprietary recover technology enables the robot to recover bunker fuel spills including high viscosity low sulfur fuel oil (LSFO), low viscosity heavy fuel oil (HFO), diesel, as well as microplastics in an efficient manner. The technology owner is seeking to collaborate with companies that provides marine pollution control/recycling service and government agencies to conduct a pilot trial in Singapore, with an option to further co-develop and integrate technologies that enhances the capabilities of the robot, such as identification of marine pollutants. Two solutions were offered: Oil skimming robot: 100 kg remote controlled robot of up to 1000 m operating range. About 1.0 ton of recovered oil/contaminant storage tank and process up to 26.6 kL/h. Capable of unmanned/autonomous/remote operation with minimum supervision. Field demonstration performed in river, harbour, and open sea in Asia and Middle East. Ocean cleaner robot: 45 kg remote controlled robot of up to 1000 m operating range. About 0.2 ton of contaminant storage tank and process up to 2 ton/h. Both solutions work in tandem with an air drone that pins a GPS location where pollutants are found. The information is then relayed to the robot for its autonomous navigation to its target location for its operation. The robots can be deployed for floating pollutants recovery from the surface of the water, such as rivers, beams, dams, and oceans. Pollutants that can be recovered include high viscosity low sulfur fuel oil (LSFO), low viscosity heavy fuel oil (HFO), diesel, microplastics of 0.001-5 mm, etc. A ratchet-shaped material that enhances the effect of attracting water to hydrophilic porous materials to optimise the recovery of marine pollutants in an autonomous robot. Marine Waste Management, Marine Pollutants, Marine Pollutant Recovery Robot Environment, Clean Air & Water, Mechanical Systems