innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Exploration Robot for Pipeline Asset Anomalies Identification and Analysis
Leaks in water pipelines are a common problem for utility companies. In the utility sector, the term “real losses” refers to actual physical water leaks that occurs on transmission and distribution mains, leakage and overflow at utility storage tanks and leakage on service connections up to the water meter. These non-revenue water losses cause a significant economic loss even to some of the most well-managed water distribution systems in the world. To manage and reduce water loss, utility companies carry out preventive maintenance, perform active water network monitoring by using noise loggers, smart meters, flow/pressure meters to collect useful data. Another proactive approach is to employ state of the art leak detection and localisation technologies such as acoustic leak detection (hydrophones), accelerometers, or the use of robots/endoscopes. Such approaches often face the challenges of false alarms, inaccurate leak pinpointing, limited exploration range and high cost of long-term monitoring. Developed by a South Korea-based startup, the proposed technology herein relates to an AI-aided exploration robot for underground/buried pipeline diagnosis for leaks, cracks, corrosion, scale, surface damage and other anomalies using image, audio, pH and LiDAR sensor data. Unlike conventional robots, the exploration robot is designed to be relatively small (smallest being 4.4 cm diameter x 11 cm length) to enable direct inspection of the inside of small diameter water pipelines. Designed to complement hydroacoustic technology, the exploration robot also addresses the current challenge of short explorable distance of about 100 m by offering up to 3 km exploration range. The startup is seeking to work with utilities or companies providing services to utilities to perform trial preferably in Singapore and explore long term collaborations in terms of customising solutions to specific applications, as well as technology licensing and revenue sharing through joint development with Singapore-based partners. Consist of two types of tethered exploration rovers: 1) Small robot equipped with image, sound and pH sensors, and 2) Robot equipped with LiDAR equipment. Designed to navigate bends and angles within pipelines, the robot is capable of inspecting water pipes with diameters ranging from 50 mm to 300 mm. Based on the collected data, the system performs AI-aided diagnosis of anomalies of up to 5 classes, i.e., Normal Pipe, Weld, Corrosion, Scale, and Surface Damage, along with a water pipe deterioration score and recommendation for pipe cleaning and/or replacement cycle. Capability to develop 3D maps based on image and other sensor data to enable digital twin-based asset management solution for the water distribution network and facilities. Utilities or public agencies that operates and maintains the water distribution network. Facilities that are close to its useful life: for early warning / prediction of the cleaning and replacement cycle of pipes. Future development for oil and gas pipelines applications. As of 2018, the global water industry generated about $1087.4 billion, accounting for about $600 billion in capital expenditures and operational expenditures for water and sewage-related facilities. Singapore's smart city and infrastructure management market is growing rapidly, and it is expected to reach billions of dollars by 2025. In particular, the water supply and infrastructure management market constitute a significant portion, estimated at several million to tens of millions of dollars annually. The nationwide water leakage rate in Singapore is around 10%, which is a substantial loss for a small city-state. Efficient and accurate pipeline inspection and maintenance powered by AI image analysis and digital twin. Exploration robots equipped with multiple types of sensors including LiDAR to generate 3D maps, with industry leading exploration range of up to 3 km. AI-driven robot inspects water pipelines in real-time, detecting issues such as leaks, corrosion, and blockages without requiring service interruptions, which ensures a continuous water supply and minimises costly manual inspections. Water pipes, Abnormal signs, Exploratory robot, 3D maps, Digital twin Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Eco-Friendly Water-Based Air Purification
Controlling both outdoor and indoor air pollution is crucial for protecting human health and the environment. Outdoor air pollution from industrial emissions and vehicle exhaust contributes to respiratory and cardiovascular diseases, global warming, and environmental degradation. Indoor air pollution can also cause chronic respiratory conditions and other health issues. According to the World Health Organization (WHO), outdoor air pollution causes approximately 4.2 million premature deaths annually, while indoor air pollution accounts for around 3.8 million premature deaths each year. Traditionally, wet scrubbers are used to reduce air pollution, ensuring regulatory compliance and protecting human health. However, they have drawbacks such as scaling, fouling, inefficient pollutant removal, and generating solid waste. These issues lead to frequent maintenance, high operational costs, and environmental pollution. This technology addresses these pain points by utilizing an array of water jets without the need for packing materials. This innovative solution offers more efficient pollutant removal, reduced maintenance, a compact design, and lower energy consumption, effectively solving the problems associated with traditional wet scrubbers. The technology owner is seeking collaborations with companies in the chemical/ pharmaceutical/ steel manufacturing sector for test-bedding and research and development (R&D) projects that require an eco-friendly scrubber. The advanced scrubber technology features 3000 high-efficiency water jets that maximize contact area and ensure even water distribution, eliminating the need for traditional packing materials. This design addresses issues like scaling, fouling, and corrosion, resulting in lower maintenance and operational costs. The system is compact, enhancing space utilization within facilities. It operates with a compressed spray, effectively capturing pollutants through vertical collision and inertial force. Test results demonstrate a significant reduction in pollutants such as ammonia, formaldehyde, and acetic acid. Additionally, the technology is energy-efficient, reducing power consumption compared to traditional scrubbers, and supports sustainability goals by minimizing solid waste generation.  This technology has the potential to be applied on these areas, harnessing on its ability to remove pollutants effectively using water as a filter: Chemical Manufacturing: Handles a wide range of chemical emissions effectively, ensuring compliance with environmental regulations Steel and Metal Processing: Captures fine particulate matter and metallic dust, improving air quality Food and Beverage Processing: Improves air quality in processing plants, enhances worker safety, and reduces environmental impact Pharmaceutical Manufacturing: Ensures high removal efficiency for specific pollutants such as ammonia and formaldehyde High-Efficiency Water Jets: For maximizing gas-liquid contact, ensuring even water distribution, eliminating issues with uneven waterjet output when compared to traditional systems No Packing Materials: Does not require packing materials, addressing problems like scaling, fouling and corrosion of traditional scrubbers Statistically Proven: 100% reduction in pollutants such as ammonia, formaldehyde and acetic acid Environment, Clean Air & Water, Sanitisation, Mechanical Systems, Sustainability, Sustainable Living
Plasma Activated Water Device for Agricultural Produce Decontamination
Unsafe and contaminated food poses significant global health risks, affecting approximately one in ten people worldwide and leading to economic losses of around $110 billion annually in low and middle-income countries due to reduced productivity and medical expenses. This issue also accounts for an annual burden of 33 million disability-adjusted life years and causes about 420,000 premature deaths. Additionally, the escalating use of pesticides in food production to meet the demands of a growing population contributes to approximately 200,000 deaths each year due to toxic exposure, posing severe threats to both human health and the environment.  This technology, Plasma Activated Water (PAW) provides an eco-friendly, chemical-free decontamination technique which eradicates residual chemicals, inhibiting microbial growth in agricultural produce. The technology is highly effective (95% reliability) in breaking down organic compounds, including pesticides, and destroying microbial pathogens on the surfaces of fruits and vegetables, resulting in an extended shelf-life.  PAW eliminates the need for potentially toxic chemicals for washing, minimizes chemical residues, reducing environmental impact and agricultural losses, thereby lowering costs. It effectively degrades pesticides, enhancing food safety while maintaining nutritional quality and sensory qualities.   The technology owner is seeking collaborations with agricultural companies or Institutes of Higher Learning to test-bed their technology.  Plasma Activated Water (PAW) is an innovative technology that harnesses the reactive properties of plasma to enhance the characteristics of water. The process involves generating an electrical discharge in a gaseous environment, creating a plasma rich in reactive oxygen and nitrogen species (RONS). The use of pin-hole technology allows for precise and controlled plasma generation at the required intensity and location. This technique involves creating a small, focused plasma jet through a pin-hole or narrow aperture, which directs the plasma stream accurately to the target area. This precision ensures effective application, reducing the risk of unintended exposure and increasing treatment efficacy. The focused nature of the plasma jet also minimizes diffusion, resulting in more efficient energy use and lower operational costs. The reactive species interact with the surface of agricultural produce, they effectively deactivate or destroy pathogens, bacteria, and pesticide residues. PAW technology significantly enhances food safety by reducing contaminants in produce by over 50-80%, compared to just 30% with standard water washes.  This technology has the potential to transcend agricultural applications, harnessing its pathogen- and bacteria-destroying capabilities.  Healthcare and Medical Sector: Can be used to irrigate wounds, leveraging its strong antimicrobial properties to clean and disinfect wound sites, promoting faster healing and preventing infections Industrial Wastewater Treatment: To treat industrial wastewater by breaking down pollutants and pathogens, ensuring that the treated water meets environmental regulations  Superior Decontamination Efficiency: Highly Effective: PAW technology significantly reduces contaminants, achieving over 50-80% reduction in pathogens and pesticide residues compared to just 30% with standard water washes. Its decontamination efficiency stands at 95% reliability Broad-Spectrum Antimicrobial Action: PAW effectively eliminates a wide range of microorganisms, including bacteria, viruses, and fungi, providing comprehensive protection Eco-Friendly and Chemical-Free: Minimized Chemical Use: Unlike traditional methods that rely heavily on chemical disinfectants, PAW uses plasma to activate water, significantly reducing the need for potentially harmful chemicals Harmless Byproducts: The reactive oxygen and nitrogen species (ROS and RNS) generated by PAW break down into harmless byproducts, such as water and nitrogen, making it environmentally friendly Environment, Clean Air & Water, Sanitisation, Foods, Quality & Safety, Sustainability, Food Security
Revolutionizing PGM Recycling: Efficient Recycling of Platinum Group Metals
Platinum group metals (PGMs) are critical raw materials essential in diverse industries, including automotive catalytic converters, jewelry, glassware, petrochemical refining, electronics, and healthcare sectors like pharmaceuticals and dental implants. Primarily sourced through the mining of PGM ores, they constitute about 70% of the global PGM supply, with South Africa and Russia accounting for 85% of this production. This concentration in supply can lead to price gouging and market monopoly. Recycling PGMs from waste not only mitigates the supply shortfall but also reduces environmental impacts compared to mining. However, conventional recycling methods are energy-intensive, requiring temperatures around 1500°C, and involve costly downstream processing to treat waste. Furthermore, the high processing temperatures result in high-value raw materials being burnt and releasing harmful toxins. The technology owner has developed a novel biorecovery method that incorporates and modifies a series of biochemical and biological processes into a streamlined 3-stage process as opposed to the multi-tiered stages of current conventional methods used in industry. It offers the following advantages over the competition: Energy Efficiency: consumes 6x less energy than traditional methods Cost Effective: 3x cheaper in operation cost High Yield: capable of recovering multiple PGM simultaneously with high yield even from low-grade waste Sustainability: support company decarbonization goals by offering a truly green and sustainable recycling manner for spent catalyst The core process and specifications of the technology are summarised as follows: Statistically-Optimised Ultrasonication: as a key pretreatment step, this sonication method effectively removes all undesirable metals from waste, isolating PGM-rich materials, called the PGM-preconcentrated stream, enhancing the efficiency of subsequent steps. Bioextraction Technique: secondly, utilise a novel and unique bioextraction technique to extract PGMs from waste with high efficiency (i.e., 99% recycling rate per cycle for rhodium (Rh), 92-95% per cycle recycling rate for platinum (Pt) and palladium (Pd)). It can be employed at a commercial scale without compromising yield. Bioreduction, Bioaccumulation, and Bioprecipitation: a combination of these improved biological processes are used in the third step to produce PGM into powder form which further undergoes separation and purification to produce high-purity PGM products. This technology is ideal for industries that are interested to recycle their spent catalysts. The potential applications are as follows: Catalyst manufacturers Precious metal recycling companies Electronics and lithium ion battery (LIB) manufacturers Waste management companies Modular design: reduced logistics costs and downtime Lower cost (CAPEX & OPEX) compared to existing technologies Superior recovery rate: even for low-grade wastes  Sustainable and efficient recycling: offer significant step towards decarbonisation in industrial practices Biorecycling, Platinum group metals, Low carbon emission, Decarbonisation, Clean technology, Circular economy Chemicals, Catalysts, Environment, Clean Air & Water, Biological & Chemical Treatment, Waste Management & Recycling, Industrial Waste Management, Sustainability, Circular Economy
Remotely Operated Vehicle for Inspection and Maintenance of Underwater Structures
The current oil and gas market situation and the growing demand for clean energy are driving companies to develop offshore infrastructures for oil and gas extraction and wind farms. Maintenance of underwater structures must be carried out by Remotely Operated Vehicles (ROVs), which can operate 24 hours a day, 7 days a week. However, the daily costs of such operations are high, and companies are looking for innovative solutions to reduce operation time and save costs. Currently, there are two types of ROVs in use: work-class and inspection ROVs. Work-class ROVs are large and heavy, weighing up to 8 tons, and are capable of performing a variety of tasks. They require vessels and cranes for transportation and deployment and can operate at depths of up to 8000m. They are equipped with specialized tools such as dredgers, robotic arms, LIDARs, and other vision-enhancing electronics. On the other hand, inspection ROVs are small and light, weighing up to 100kg, but have limited capabilities. They can only stream video and perform basic inspections, typically carrying only a camera and sonar. They are usually used at depths of up to 300m. A startup based in Poland has introduced a new class of ROV that combines the lightness of inspection ROVs with the capabilities of work-class ROVs. The ROV’s patented variable buoyancy hull technology gives it capabilities similar to those of a work-class ROV but with a smaller footprint. It can submerge without using vertical thrusters, making it very energy-efficient and reducing its carbon footprint. The unique variable buoyancy hull approach allows for precise control and intuitive operation, even in the presence of external factors such as sea currents. This technology is particularly useful for subsea missions close to the seabed, as the variable geometry hulls do not disturb sand and dust particles, allowing for better situational awareness for the operator. This innovative ROV can change their buoyancy to lift more (up to 1:1 payload-to-weight ratio), enabling it to carry various tools and equipment. The ML/AI-based control system automatically changes the buoyancy of the individual hulls, making it intuitive and easy for pilots to control and flattening the learning curve. The technology owner is seeking partnerships with the maritime, defense and other industries in the Southeast Asia region to testbed and tailor the ROV to meet specific application requirements. Physical Depth Rating [msw, meter sea water]: 300 Dimensions (LxWxH) [mm]: 1600x990x630 Weight in air [kg]: 200 including battery pack Dynamic payload [kg]: 100 Total payload [kg]: 200 Maneuverability and propulsion 4 horizontal brushless DC thrusters (different options available) 2 variable-buoyancy hulls No vertical thrusters Forward thrust [kgf]: 28 Lateral thrust [kgf]: 28 Maximum lift [kgf]: 100 Speed [kts]: >4 Video and lighting 6 independent cameras Video resolution: 4k on each camera Video transmission: h.265 12 LED Lights (2 per camera) Quick & easy camera mounting Included 3rd person POV camera arm for intuitive operation Pan and tilt platform (optional) ROV power Battery pack capacity [kWh]: 5.55 Operating time on one charge (typical inspection work) [hours]: 6 Time to swap battery pack [minutes]: 5 Battery pack charging time 0-100% [hours]: 3 Disposal of UXO (unexploded ordnance), both for defense and civilian industry, especially at offshore windfarm build sites. Inspection of subsea wind farms. Cost-effective and eco-friendly solution for tasks such as seabed mapping, undersea structure inspection, and ocean health monitoring. Cleaning and maintaining ships without dry dock, which leads to millions of dollars in savings. Advanced capabilities in inspection and infrastructure monitoring, particularly in coastal zones, harbors, and seaports. Inspection and maintenance of oil and gas infrastructure at depths of up to 300m. Inspection of ports and dams. Support operation in low-depth underwater mining. Inspection of wrecks. In 2020, worldwide ROV and AUV market was valued at about 2.9 billion dollars, and in 2021, it was over 3.6 billion dollars and rising. The war in Ukraine and the unstable situation with Russia’s oil and gas markets forced other countries to speed up offshore investments in green energy and oil and gas. The ROV’s usability is divided into inspection drones about 54%, work class about 34%, and the rest is for Autonomous Underwater Vehicles. This numbers shows that the drones can address more than 80% of the market and is a game-changing technology. Enhanced inspection class: Utilisation of sensors and tools previously available only to the bigger ROVs. Replacing divers: No human life at risk. Unlimited working hours. Rapid deployment: Ready to operate in 5 minutes 24/7 uninterrupted operations. Exceptional payload capabilities in compact form Variable buoyancy technology for precise control Modular design for easy integration of various sensing technologies Capable of anchoring on the sea-bottom for long-term monitoring Electric powered with a low carbon footprint. Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Long-Lasting Disinfectant
Disinfectants are chemicals that kill or inactivate harmful microorganisms, such as bacteria, viruses, and fungi. Commonly used to disinfect surfaces and objects that are frequently touched, disinfectants are an important tool for preventing the spread of infectious diseases and reducing the risk of transmission. The technology on offer is a long-lasting active compound that serves as a disinfectant. Comprising of nanocomposites and polycondensates, the disinfecting active compound exhibits high efficacy against a broad spectrum of microorganisms including bacteria and viruses. Due to the controlled release effect of active species, the disinfectant’s efficacy can last at least 3 months by accumulation of the active species on the surface of microorganisms and denaturing of the microorganisms’ proteins. This technology is safe and non-toxic to humans and pets, making it applicable for a wide variety of products. The technology owner is interested in joint R&D/co-development projects with partners keen to integrate this technology for new products/applications. The disinfectant technology is based on a system composing of Ag-TiO2 nanocomposites + polycondensate resin. Reactive oxygen species (ROS) are produced by a photocatalytic process to achieve the disinfecting properties. Some features of the disinfectant technology include: High efficacy against broad spectrum of bacteria and viruses, effectively targeting 99.99% of bacteria (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Acinetobacter baumannii) and SARS-CoV-2 virus Long-lasting – remains efficacious for at least 3 months Versatile – suitable for both porous and non-porous surfaces Safe and non-toxic Water-based – the active compound is available as a liquid The technology has been validated in ready-to-use solution for disinfection and cleaning and in a disinfecting coating solution. Possible applications include (but are not limited to): Coatings Cleaning products for home/industrial usage e.g., liquid disinfectants, aerosols etc Textiles Agriculture Targets broad spectrum of bacteria and viruses (including SARS-CoV-2) Long-lasting efficacy Eco-friendly (water-based and no VOC) disinfectant, long-lasting, nanocomposite, antiviral, antibacterial, antimicrobial, antifungal, infectious diseases, additive, bacteria, virus, fungi, fungus, non-toxic, active compound Materials, Nano Materials, Chemicals, Coatings & Paints, Environment, Clean Air & Water, Sanitisation, Life Sciences, Agriculture & Aquaculture, Additives
Next-Gen Flood Detection with Environmental Location Intelligence
In an era where environmental challenges are escalating, the need for precise and timely flood monitoring has never been more critical. Addressing this pressing issue is a state-of-the-art flood detection system that offers unparalleled accuracy in water level detection, down to the centimetre, and in real-time. Designed to resist environmental disturbances, this technology ensures consistent and reliable performance. Its self-sufficiency is highlighted by its connectivity via mobile networks and an ultra-efficient power system, which includes a solar panel ensuring sustained operation even in less-than-ideal sunlight conditions. The primary beneficiaries of this technology are government agencies and enterprises involved in environmental infrastructure projects. Additionally, businesses facing environmental challenges and seeking robust solutions will find this invention invaluable. By providing instant alerts on potential flood threats and integrating seamlessly with third-party management systems, this technology addresses a significant gap in the marketplace, ensuring safety, reducing potential damages, and saving lives. Multiple high precision pressure sensors for accurate sensing pressure change due to rising water
 Built-in SIM and included IoT network connectivity works anywhere independently by support LTE-M, NB IoT and GPRS mobile networks
 Unlimited battery life
Ultra efficient power system with built-in 750mAH rechargeable battery and solar panel, 3-months battery life without Sun Auto alerts for sudden flood
support push notification, email, sms or custom alerts
 Enterprise Ready
Cloud based Enterprise Dashboard and ready API for integration
 Compact size and easy to install
8cm x 8cm x 7cm (inclusive screw-on mounting for standard 3” PVC pipe)
 Weather proof
rain resistant and operates from -20℃ to 60℃ The flood detection system's advanced capabilities make it a versatile tool with applications spanning multiple industries: Urban Planning & Infrastructure: Municipalities can integrate the system into city planning, placing sensors in flood-prone zones, underpasses, and near water bodies. This aids in timely evacuation and infrastructure protection during heavy rainfall or sudden water level rises. Agriculture: Farmers can deploy the system in fields to monitor water levels, ensuring optimal irrigation and preventing crop damage from unexpected flooding. Real Estate & Construction: Developers can use the technology to assess flood risks in potential construction sites, ensuring the safety and longevity of structures. Environmental Research: Research institutions can utilize the system for studying climate change effects, water table fluctuations, and the impact of deforestation on water levels. Insurance: Insurance companies can integrate the technology to assess flood risks in specific areas, aiding in policy formulation and claims verification. Disaster Management: Emergency response teams can deploy the system in regions prone to natural disasters, ensuring rapid response during floods. Tourism & Recreation: Resorts and recreational areas near water bodies can use the system to ensure guest safety, especially in regions with unpredictable weathers. Transportation: The system can be installed near roads, railways, and bridges to monitor water levels, ensuring safe transit and timely maintenance. This technology enables marketing various products, including smart city flood management systems, agricultural water management kits, construction site safety tools, and environmental research equipment. Its adaptability meets diverse industry water monitoring needs. The flood detection system's market size is influenced by key factors: Urbanization: Expanding urban areas increase flood risks due to inadequate drainage. With 68% projected to live in cities by 2050, urban flood detection systems are crucial. Climate Change: Environmental changes cause more extreme weather events and rising sea levels. This has escalated flood risks in previously safe areas, emphasizing the importance of flood detection systems. Agricultural Dependency: Agriculture employs over 26% of the global population, creating a significant market for flood detection in farming. Infrastructure Development: Growing infrastructure projects demand protection from environmental threats like floods. Considering these factors, the global market for flood detection systems is expected to be worth billions, with steady growth. The technology's attractiveness to the market lies in: Real-time Detection: Its centimeter-precise real-time water level detection is invaluable for damage prevention. Low Maintenance: Self-sufficient power and weather-resistant design reduce long-term maintenance costs. Versatility: Easy installation and compact design suit various settings, from urban areas to remote agriculture. Integration: Compatibility with third-party systems and diverse alert mechanisms adapts it to different industries. Environmental Focus: Growing awareness of climate change and its impact drives demand for technologies addressing flooding and rising sea levels. In summary, the technology's precision, adaptability, and response to global environmental challenges make it highly attractive to the market. This innovative flood detection and environmental monitoring technology offers several unique value propositions (UVPs) that set it apart from the current "State-of-the-Art" systems. Precision in real-time flood detection is unparalleled. It can detect water level changes down to the centimeter within minutes, providing stakeholders with timely and accurate data. Self-sufficiency power and connectivity. With a 750mAH rechargeable battery and solar panels, it operates independently of external power sources. It also supports multiple mobile networks for seamless connectivity, even in remote areas. Environmental robustness ensures it remains operational in challenging conditions, overcoming a limitation of many existing systems. Versatile alert mechanisms, including push notifications, emails, SMS, and custom alerts, ensuring critical flood warnings reach recipients promptly. Compact and user-friendly design simplifies installation, contrasting with bulky and complex systems. Holistic enterprise solution with a cloud-based Enterprise Dashboard and API integration capabilities, making it easy for businesses and government agencies to incorporate into existing infrastructure and management systems. In essence, the UVP of this technology lies in its precision, self-sufficiency, robustness, and user-centric design. It not only addresses the limitations of the current "State-of-the-Art" but also anticipates the evolving needs of a world grappling with environmental challenges, making it a future-ready solution in flood detection and management. Real-time flood detection and alerts, Pressure sensing for water level monitoring, Mobile network connectivity, Solar-powered self-sufficient monitoring, Enterprise environmental tools, Disaster prevention Infocomm, Internet of Things, Wireless Technology, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Low Carbon Refrigeration Technology for Sustainable Buildings
Refrigeration and cooling account for a significant fraction of total energy consumption and greenhouse gas (GHG) emission of urban buildings. Conventional vapor-compression refrigeration technology uses GHG refrigerants, e.g., chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HFC) with high global warming potential (10-300 times of CO2) and they are difficult to be recycled. The coefficient of performance (COP) of vapor-compression refrigeration is 3-4, and it is difficult to be further improved. For the above-mentioned reasons, the existing vapor-compression refrigeration faces challenges to meet the requirement of energy saving and carbon neutrality, and it should be gradually substituted by more environmentally friendly refrigeration technologies. To overcome this challenge, a zero-GHG-refrigerant and 100%-recyclable solid-state elastocaloric refrigeration technology based on phase-transition shape memory alloys has been developed by a research team based in Hong Kong. Compared to other refrigeration alternatives, the elastocaloric refrigeration completely avoids the use of GHG refrigerants and has very high cooling power and efficiency with a material COP of up to 30. The elastocaloric refrigeration is realised by cyclic compression of nickel-titanium  shape memory alloy (SMA) tubes, where the martensite-to-austenite phase transformation absorbs a large amount of heat from the surrounding environment. By optimizing the tubular structures, the first-generation elastocaloric refrigeration prototype achieved a total cooling power of 218 watt and a temperature span of 75 ℃, which are the highest among existing elastocaloric cooling prototypes. In addition, the COP of the prototype is expected to be about 8. The research team anticipated that a cooling power of 1000 watt will be achieved by this year and 2000 watt in the coming year. They are seeking co-development partnerships with metal manufacturers or device manufacturers based in Singapore to support the scale up of their prototypes. The research team is building elastocaloric fridges and air conditioners using the technology. Two prototypes were built: a fridge with a cooling power of 48 watt, and an air conditioner prototype with a cooling power of 218 watt and a temperature span of 75 ℃. The specifications of the elastocaloric air conditioner is listed as follows: Driving mode: Compression, spiral-type tubular nickel-titanium Temperature span: 75 Kelvin Specific cooling power: 12 W/g Total cooling power: 240 W Coefficient of performance: 8.4 Fatigue: 1,000,000 cycles. General households, offices, commercial malls, or any space requiring cooling and refrigeration. The elastocaloric cooling/refrigeration is applicable to fridges, air conditioners or any form of refrigeration devices. The market size for elastocaloric cooling/refrigeration is huge, considering that fridges and air conditioners are essential for modern families, malls, cold-chain transports, etc. According to market reports, the market size for global air conditioning systems and refrigerators alone in 2022 is valued at USD123B and 69B respectively, nearly USD200B altogether; by 2030, it is estimated the combined market will reach over USD300B.   With increasing need for power saving especially in developed economies as well as stringent regulations and policies regarding improved ways of energy utilization coupled with enhanced consumer awareness is expected to boost the demand. Hence, alternative products that can replace the use of refrigerants that contribute to global warming are projected to accelerate the growth of market over the forecast period. The elastocaloric cooling/refrigeration is attractive to the market, because it is environmentally friendly and helping consumers to save electricity costs by enhancing the COP. The elastocaloric fridges and air conditioners have the following unique value propositions and features: Completely avoid the usage of GHG refrigerants. SMA refrigerants are in solid state. Entropy change of nickel-titanium SMA can reach 0.32 J·cm−3·K−1, over 9 times of that of HFC-32. Save energy by increasing the COP of up to 8. Ultralong fatigue life withover 108 cycles of operations and is expected to be functional for up to 10 years. The core SMA material is a typical smart material and is 100% recyclable. Controllable and programmable with smart sensors and control systems. The sensors can sense the temperature change in the environment and the device can adjust the operating frequency for both rapid cooling and energy-saving purposes. Sustainable cooling, Refrigeration, Zero greenhouse-gas-refrigerant, Solid-state elastocaloric refrigeration Energy, Sensor, Network, Power Conversion, Power Quality & Energy Management, Environment, Clean Air & Water, Mechanical Systems
Time Reversal Technology For Pipelines Condition Assessment
Urban pipeline systems are vital, large, long-lived, complex, largely inaccessible, and aging, fraught with deficiencies and inefficiencies that result in massive losses of water resources and energy use. Thus, they present an enormous challenge to making cities sustainable, adaptive, and carbon neutral. This pipeline condition assessment technology is pioneered by experts who have leveraged advances in research and engineering science to deliver unique and optimal performances. The technology introduced the use of Time Reversal (TR) for defect detection and condition assessment of pipelines. In fact, TR technology is reliable, cost-effective, and has a long-range capability. It possesses the unique feature of providing high resolution while being non-intrusive and non-disruptive. The TR technology can detect existing leaks, bursts, blockages, malfunctioning devices (e.g., air valve), pipe wall strength condition, and harmful transient. The software provides the following functionality: Active testing: Actively probing the system to control the resolution of localization Passive testing: To detect bursts and harmful transients Real time monitoring: To assesses system dynamics and demand patterns On-demand and automatically generated reports On demand sensor control and sensor expansion Flexible & High sampling rate This technology enables the following features: Real-time autonomous remote monitoring Reliable, low cost and long-range Provides high resolution while being non-intrusive and non-disruptive - a unique technology feature Scalable for different pipe systems in terms of size, type and pipe material This technology uses an in-house interactive software that integrates and controls an automated, distributed, cloud-based monitoring and diagnostic system, which comprises multiple high-sampling rate (>1000 samples/s) data acquisition systems, transducers, and control devices deployed at access points of the pipeline system. The installed devices perform synchronized measurements between access points with previously unattainable accuracy (microseconds) thanks to integrated GPS technologies. Data is uploaded at high rates to a cloud server via 5G connections. Therefore, this technology is able to perform diagnosis tests on demand. The data obtained is stored in the cloud and processed in real time with novel TR algorithms to evaluate the integrity of the pipeline system. Potential defects and pipe wall deterioration will be displayed graphically on a virtual map of the system. The designed diagnostic system is inherently scalable; thus, it is possible to add multiple measurement and control stations according to needs and the spatial extent of the pipeline system (e.g., the water distribution network). This TR technology is scalable and, thus, can be implemented for different pipe systems (e.g., water supply systems, sewage rising mains, building pipes, district cooling systems) and for any pipe material. Such a product is an evolution of SCADA systems for pipeline monitoring and condition assessment. The interactive software integrates the world’s first real-time, fully automated, and autonomous TR-based technology for pipeline condition assessment, enabling the timely detection of defects in the district metering system to support proactive mitigation measures. The smart urban pipeline system being developed incorporates IoT for managing pipelines, significantly reducing maintenance costs and extending the lifespan of urban systems. This technology is advantageous for utility providers, designers, and asset management companies. Its application in developing estates and building pipes opens up an additional extensive market with the potential for high returns and exponential revenue growth. The regular expansion, replacement, and rehabilitation of urban pipelines present a substantial market and potential for implementing TR technology globally. Approximately 100 km/year of pipes are being added in Hong Kong, and over 40,000 km/year of pipes in Mainland China. Worldwide, millions of kilometres of urban water infrastructure will need to be added to supply the growing city populations, expected to expand globally by 2.5 billion by 2050. The replacement and rehabilitation of aging urban pipelines that exceed their service life are common practices in all urban pipeline systems. In Hong Kong, approximately HK$23.6 billion was spent on replacing 3,000 km of aged water mains from 2000 to 2015. The number of water main bursts dropped significantly, decreasing by about 98% from over 2,500 in 2000 to less than 150 in 2015, with a simultaneous reduction in the number of leaks. While Replacement and Rehabilitation (R&R) has proven effective in reducing pipe bursts, it is undeniable that the associated costs are high. The design and management of urban pipeline systems are currently constrained by the absence of a diagnostic system for the relatively inaccessible buried pipelines. Among the existing diagnostic and defect detection systems, in-pipe technologies are the most reliable. However, recent trials in Hong Kong have revealed these technologies to be costly, disruptive, time-consuming, labour intensive, and, in some cases, inconclusive, especially for defects near junctions. Other non-intrusive methods, such as acoustic correlators and noise loggers, are low in cost, but these methods are hands-on, exhibit poor performance in localization, and incur a high rate of false alarms. With the implementation of this TR technology, pipe defects (e.g., existing leaks, blockages, malfunctioning devices, pipe wall deterioration, etc.) can be detected before any serious burst occurs. As a result, the serviceable life of urban pipelines can be extended, and the costs for emergency repairs, replacements, and rehabilitation of urban pipelines can be significantly reduced. The implementation of this technology will also ensure that newly installed R&R pipes don’t suffer the same wasteful and underperforming fate as current ones. The TR technology is reliable, low cost and long-range, and it has the unique feature of providing high resolution while being non-intrusive and non-disruptive.   Pipeline, Condition Assessment, Defect Detection, Smart City, High Resolution, Non-intrusive, Novel Technology, Internet of Thing Infocomm, Big Data, Data Analytics, Data Mining & Data Visualisation, Wireless Technology, Smart Cities, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems, Sustainability, Sustainable Living