innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Rapid, Colourimetric and Non-Enzymatic Detection of Aquatic Bacteria
Routine monitoring of water quality is paramount in aquaculture operations such as Recirculating Aquaculture Systems (RAS) to ensure high productivity and high produce quality. Currently, the monitoring of microbial content in water is mostly based on visualisation of water turbidity and observation of fish behaviour. Some RAS operations use the bacterial culture-based approach for surveillance of microbial quality of water. However, this approach is laborious, requires microbiological testing expertise, and test results are obtainable only after a long incubation period.  Bioluminescent ATP assay is another method that can be used to monitor microbial content. However, it requires lysis of bacteria to release the ATP contained inside the bacteria, and enzymatic reaction of luciferase on ATP to produce the luminescence. While it provides results within a short time, the cost of luciferase, lysis reagents and luminometer could be prohibitive for routine and extensive testing of water samples.   The technology owner has developed a non-enzymatic test reagent which gives a rapid colour change in the presence of Gram-negative bacteria. The technology owner is keen to collaborate with manufacturers of analytical instruments and diagnostic test kits, as well as partners from the aquaculture, biomedical and water quality control industries, to further develop and commercialise this technology. Features of this novel test reagent include: Fast reaction, any colour change is visible within 15-20 seconds Specific detection of Gram-negative bacteria, e.g. Vibrio spp., which contribute to many of the bacterial diseases in aquaculture Does not require samples to be treated with lysis buffer prior to adding the test reagent Can be prepared easily by simple mixing of a formulated solution with a powder Environmentally benign and not corrosive This test reagent is efficient in detecting aquatic bacteria in aquaculture farms. It is a convenient, instrument-free, and economical alternative to detect presence of Gram-negative bacteria, enabling more farmers to monitor the microbial content more regularly and frequently to avoid the disease outbreaks.  It may also be applied in other sectors which require routine monitoring of bacteria, such as environmental water testing laboratories, biomedical and pharmaceutical industries. Rapid colour change and can be visualised without the use of any electronic devices Quick and simple preparation and testing method without involving special equipment or personnel with advanced microbiological testing expertise  Ingredients of the test reagent are commercially available at low cost Environmentally benign and do not require special treatment for disposal  Unlike ATP reagents that require storage at low temperatures, this test reagent is stable at 25-30°C for at least 8 months Rapid, Colorimetric, Detection, Non-Enzymatic, Aquatic, Bacteria Life Sciences, Agriculture & Aquaculture, Chemicals, Analysis, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems, Sustainability, Food Security
Nanofiltration and Reverse Osmosis Membranes with High Water Permeability
Thin film composite (TFC) membranes are the main membrane types for reverse osmosis (RO) and nanofiltration (NF) membranes. RO membranes can be used for desalination, utility water treatment, wastewater treatment and reuse as well as process water treatment. NF membranes can allow monovalent ions, such as sodium chloride, to pass through the membrane, while rejecting divalent and multivalent ions, such as sodium sulfate. It has applications in the diary, food, dye, biotech, pharmaceutical and industrial processes for concentrating targeted streams. Boosting membrane permeability without a decrease in their rejection to target ions has been the objective of many membrane producers. Many methods have been proposed in literature to achieve the target, such as incorporating nanoparticles or surfactants. However, the synthesis of uniform nanoparticles in large scale is a problem and the long-term stability of nanoparticles in the polyamide layer is of concern. The process of adding surfactants is also not controllable, leading to a potential concern for quality control in the final membrane product. This invention relates to a simple method to increase the water permeability of thin film composite membranes for nanofiltration and reverse osmosis by 2 to 5 times. The chemicals involved are readily commercially available and the method is simple without the need to change the existing production line. In this technology, the researchers have identified additives that are thermodynamically stable and can be synthesised with a narrow size distribution. Compared to surfactants, the additives have controllable size, which can help fabricate nanofiltration membrane with precise rejection to target ions. These features can facilitate future large scale production of the improved TFC membrane. This invention can be applied to all types of TFC membranes, including NF and RO membranes, which can be used for desalination, utility water treatment, wastewater treatment, etc.  According to MarketsandMarkets, the global membranes market is projected to reach USD10.1 billion by 2027. NF membranes are expected to grow the fastest with multiple end users. The water and wastewater treatment segment is the main driver for the RO membrane market. The global RO membrane market size is expected to reach about USD5 billion by 2026.  Water permeability can be increased by 2-5 times with minimal trade-off of salt rejection of the membrane Does not require changes to the existing production line Works on support with different chemistries (e.g. PES, PSF) Works on both flat sheet and hollow fiber supports   Nanofiltration, reverse osmosis, Thin film composite (TFC) membranes, nanofiltration (NF) membranes Materials, Composites, Environment, Clean Air & Water, Filter Membrane & Absorption Material
Synbiotics Cleaning Solution
This technology is a patented synbiotics (combination of probiotics and prebiotics) cleaning solution that offers a safe and sustainable alternative to traditional cleaning products and disinfectants. When released onto the surface, the probiotics will digest and break down dirt, grime, and other unwanted substances while the prebiotics in the solution act as an additional source of nutrition for the probiotics. The resultant surface microbiome provides a continuous cleaning effect that is longer lasting than traditional cleaning chemicals and disinfectants. Often, the overuse of traditional chemicals and disinfectants results in antimicrobial resistance (AMR), allergenic reactions to the user, negative impact on the environment and short effective lifespan. With this synbiotics technology, users can overcome these limitations and achieve a long-term effective cleaning system and a natural microflora to the environment. When utilised in healthcare settings, the synbiotics cleaning solution demonstrated a higher reduction of pathogens (80% more), decreased AMR (up to 99.9%) and health-associated infections (52% lesser). The technology owner is interested in co-development projects and test-bedding opportunities with companies looking for a sustainable and long-lasting cleaning technology i.e., cleaning equipment and automation manufacturers/suppliers and cleaning service providers. This technology consists of proprietary dual action deep cleaning probiotics enzymes and specially formulated surfactants which helps to detox surfaces, break down biofilm and dirt components through a continuous cleaning effect and microscopically purifying down to the deepest pores of surfaces. Main features of this synbiotics cleaning technology include: High efficacy and able to target broad spectrum of pathogens Long-lasting and continual cleaning efficacy Safe and non-toxic Decreased AMR (up to 99.9%) Reduction in health-associated infections (52%) Suitable for water-resistant surfaces This technology can be deployed across several sectors including healthcare, commercial, industrial, and residential buildings on water resistant surfaces (floor and walls). The technology owner has successfully test-bedded the technology in local healthcare institutions. By varying the probiotics used, this technology may also be used in agriculture, aquaculture, animal husbandry and personal care applications to extend the benefits of probiotics into new products. The global healthcare facilities and household cleaner market is estimated to be valued at US$55 billion in 2022. With the continuous use of chemical disinfectants, multi-resistant bacteria like super bugs and MRSA are expected to raise AMR and account for a rise in AMR-related deaths. This synbiotics cleaning technology can overcome and reduce AMR concerns, maintaining a long-term effective cleaning system and a natural microflora to the environment. This technology overcomes limitations in using conventional cleaning products and disinfectants such as: Limited effective short lifespan results Increasing health risks (acute & chronic) to both the user and consumers Requires more manpower & cleaning frequency Difficultly in breaking down biofilms, causing recurring odour and dirt It also provides and maintains a chemical-free, long-term effective cleaning system through the dual action deep cleaning efficiency. The technology owner is interested in co-development projects and test-bedding opportunities with companies looking for a sustainable and long-lasting cleaning technology i.e., cleaning equipment and automation manufacturers/suppliers and cleaning service providers. probiotics, prebiotics, cleaning, synbiotics, sustainable, eco-friendly, long-lasting, microbiome, antimicrobial, antimicrobial resistance, natural, health associated infections, sanitisation, disinfectant, chemicals Environment, Clean Air & Water, Biological & Chemical Treatment, Sanitisation, Chemicals, Bio-based, Sustainability, Sustainable Living
Fire Retardant Fibre Reinforced Polymer with Aerogel Jacket for Green Buildings
The regulations aimed at reducing carbon emissions have led to the adoption of a remodelling strategy that focuses on decreasing the energy usage of buildings. This can be achieved through measures such as thermal insulation and retrofitting, which extend the lifespan of buildings while reducing their energy consumption. The proposed technology by a Singapore-based research team utilises proprietary Fibre Reinforced Polymer (FRP) material for reinforcement to enhance the longevity of buildings. It contains a modified epoxy adhesive used in the FRP-adhesive-concrete interfaces to provide a range of advantageous properties, that include being 5 times lighter while 10 times higher tensile and flexural strength than steel, cost-effective in production, easily shaped, demonstrating high corrosion resistance, and offering both flexibility and tolerance to misalignment. In addition, through the modification of bonding agents and surface aerogel insulation, the fire retardancy of the material had been enhanced by 3 classes to V-0 rating according to the UL 94 plastic flammability standard. Among the superinsulation materials, aerogel stands out with its unique acoustic properties and significantly lower thermal conductivity of approximately 0.014 W/m.K. Additionally, it possesses exceptional physical and chemical attributes, such as its translucent structure. As a result, it is widely regarded as one of the most highly promising materials for thermal insulation in building applications. The FRP technology is currently pending fire testing to meet local regulatory requirements (e.g., BS 476 Part 20-23) and will be subjected to evaluation by the Building Innovation Panel of BCA in coming months. The technology owner is keen to support interested industrial partners to fabricate larger prototype of the FRP for test-bedding on site, and eventually license the intellectual property to the industrial partner for commercialisation. Through the external strengthening of structural components, the fire retardant FRP improves structural properties, leading to reduced environmental concerns, lower construction material costs, decreased labour requirements, and reduced CO2 emissions into the atmosphere. Silica aerogels typically exhibit a longitudinal acoustic velocity on the order of 100 m/s, making them suitable for various applications in acoustic devices for noise insulation. Furthermore, aerogels boast the lowest refractive index and dielectric constant among all solid materials. FRP is regarded as superior to conventional steel due to its notable advantages, including exceptional corrosion resistance, high flexibility, and tolerance to misalignment. It is also lightweight, cost-effective to produce, easy to shape, and possesses high tensile and flexural strength. Furthermore, FRP exhibits elastic properties. By modifying the bonding agent used in FRP-adhesive-concrete interfaces, the strength from the FRP developed using the proposed technology can be enhanced by 12%, and its flammability can be improved from an unclassified level to achieving a V-0 rating under the standard UL-94. Previously, aerogel found limited use in small-scale applications within the aerospace industry. However, there is now a growing trend of employing aerogel for larger building-integrated applications, aiming to reduce energy consumption. This has sparked renewed interest from both start-ups and established insulation manufacturers. The technology itself is relatively straightforward, making it an attractive choice for building owners and architects seeking a simple solution to lower energy costs. By incorporating aerogel insulation, buildings can enhance their energy performance and provide improved comfort and satisfaction for occupants. Remarkably, this technology can be applied to various types of buildings, including HDB flats, shop houses, commercial and industrial buildings, as well as both landed and non-landed housing units. Moreover, its versatility extends to both existing structures and new construction projects. Looking ahead, aerogel insulation is poised to play a significant role in the future of green building materials. Its applications extend beyond buildings and encompass areas such as architecture, vehicles, aircraft, spacecraft, and marine insulation. Meanwhile, fire retardant fibre reinforced polymer (FRP) materials have emerged as a valuable solution for building retrofitting and structural strengthening applications, particularly in terms of fire safety. These materials combine the strength and flexibility of FRP with fire-resistant properties, making them an effective choice for enhancing the fire resistance of existing structures or strengthening them to withstand fire-related incidents. When applied to building retrofitting, fire retardant FRP materials can be used to upgrade the fire performance of structural elements such as columns, beams, slabs, and walls. This approach is particularly beneficial for structures that do not meet current fire safety codes or have aged fire protection systems. The unique value proposition of aerogel insulation materials lies in their exceptional thermal performance, lightweight nature, versatility, moisture management capabilities, enhanced comfort, longevity, and environmental sustainability. These qualities make aerogel insulation materials an attractive choice for a wide range of building applications, offering significant energy savings and improved building performance. The fire retardant FRP is able to enhance fire resistance, provide structural strengthening, resist corrosion, offer lightweight and space-efficient solutions, ensure flexibility and ease of installation, offer cost-effectiveness, and provide design versatility. These qualities make fire retardant FRP materials a compelling choice for improving the fire safety and structural integrity of buildings. Aerogel blanket, Thermal insulation, Acoustic insulation, Fibre reinforced polymer, Fire retardant Materials, Composites, Environment, Clean Air & Water, Biological & Chemical Treatment, Green Building, Façade & Envelope
Molecular Imprinted Polymers (MIPS) based Fluid Sensors for Contaminants Monitoring
Monitoring of contaminants in fluids often require capital-intensive machinery and sampling comes at a hefty price tag. With the advent of tightening regulations across various industries including environmental and food industries, there is a need for a more cost-effective and efficient method to meet the growing demands and regulatory requirements in the market. Molecular Imprinted Polymers or MIPs are one such sensor technology that can potentially address this challenge. MIPs are synthetic materials that are designed to recognize and selectively bind to specific molecules, similar to the way antibodies recognize and bind to antigens. MIPs can be engineered to bind to a wide range of analytes, including organic and inorganic molecules, peptides, proteins, and even whole cells. The unique feature of MIPs is that they possess high selectivity and sensitivity for the target molecules, making them ideal candidates for designing high-performance sensors. This technology relates to a cost-effective online monitoring system using MIPs technology to detect trace levels of chemical and biological contaminants on-site in the fluid phase with low interference, high accuracy, and sensitivity. The automated real-time monitoring system requires little supervision and can be easily operated. The robust sensor is designed for long-term operation and requires minimum maintenance without compromising the reproducibility and integrity of the data. This technology allows monitoring can be applied in industries such as agriculture, food, chemical processes, environment monitoring and waste management. The technology provider is seeking partners that are interested in co-development, R&D collaborations or licensing. This technology is primarily based on the mass change and energy dissipation from the analyte adsorptions and interactions on the sensor chip, which gives a piezoelectric effect and delivers real-time, high sensitivity, and high selectivity data. The entire sampling and analysing process is automated. Key features include: Shortened analysis time  (<10 mins) compared to conventional sensors (30 - 45 mins) High accuracy, and sensitivity (ppb level detection) Real-time and online monitoring Label-free, non-toxic, and environmentally friendly sensing process Regenerable sensor chips Modular designs Automated system Heavy metal detection Pesticide residue detection Endotoxin detection Wastewater treatment and resource recovery Water quality monitoring in water bodies The manufacturing process and water monitoring regulations are becoming increasingly stringent. The global water quality monitoring market has a CAGR of 6.5% from 2020 to 2027, showing the potential commercial gains from such sensors. As more and more substances are required to be monitored, users can find convenience and cost savings from having a sensor that is able to detect multiple target molecules.  Proprietary algorithm to overcome interferences  Cost-effective (per sample basis: 5 SGD  vs. 15- 25 SGD sensor, MIPS, monitoring, water Foods, Quality & Safety, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Low-Energy HVAC System for Indoor farming and Greenhouses
The sustainable urban farming concept is growing rapidly, and Singapore is progressing well towards it.  The heating, ventilation, and air conditioning (HVAC) system accounts for more than 50% of the total energy used in an indoor agricultural farm, according to data on energy use. Technological advancements can help to address energy reduction and improve the productivity of indoor farms. Low energy-based concepts can be implemented by mainstream farm owners in Singapore to increase farm productivity and serve the increasing market demands directly.  This technology offer is a Low-Energy (Low-E) HVAC system for farming. It can cool, heat, dehumidify and ventilate any indoor space using up to 100% outdoor air exchange. It is able to achieve and maintain the optimum cooling, drying conditions, and sufficient level of carbon dioxide that are needed for farming with lower energy consumption. The operating cost of the Low-E HVAC fitted grow room is 35% to 37% lower than the conventional HVAC system for the same application. The technology owner is keen to do R&D collaboration and test-bedding with potential indoor agricultural farm owners.    The main features of this technology offer are:  35-37% energy reduction compared to conventional system 60% reduction of integrated airborne particle concentration of PM1.0 particulates Combined cooling, dehumidification and fresh air ventilation processes with up to 100% outdoor air exchange Unique Low-Energy (Low-E) HVAC system, eliminates the need to use separate equipment for each process  Using computational fluid dynamics (CFD) method to maintain optimum cooling, drying conditions, and sufficient level of carbon dioxide to resist growth of mould, mildew, and potentially hazardous organisms. Portable, modular, and scalable assembly for different sizes of application   The technology offer can be deployed in the following applications: Urban agriculture – farming and gardening Greenhouses/outdoor enclosed farms Enclosed incubation and isolation area  Medical / scientific laboratory for sample preparation and storage  The system is also scalable and customisable for bigger application areas.       This technology offer is a novel low-E HVAC system with:  100% outdoor air exchange to ensure the undisrupted supply of carbon dioxide and oxygen for plant growth and maturity  40% to 60% drying conditions within the grow room with lower energy consumption compared to the conventional HVAC system. Computational fluid dynamics (CFD) simulation method to ensure uniformity of air distribution. Capable of achieving 35 to 37% lower electricity compared to the conventional HVAC system Portable, modular and flexible setup for both indoor and outdoor growing and can be adjusted even during operation The technology owner is keen to do R&D collaboration and test-bedding with potential indoor agricultural farm owners.  low energy hvac, urban farming, greenhouse, climate control, low operating cost Environment, Clean Air & Water, Mechanical Systems, Green Building, Heating, Ventilation & Air-conditioning, Indoor Environment Quality
Low-Cost Photochemical Coating for Development of Water-Repellent Materials
Water-repellent materials have attracted a lot of attention due to their importance in various applications, such as oil-water separation for oil waste treatment, self-cleaning for corrosion prevention, and microfluidics for electronics and medical devices. Surface modification can be applied to existing materials to introduce water repellency. However, industrial applications of conventional methods are very limited due to low reaction efficiency, high costs of chemical reagents, and instability for recovery/reuse.  To overcome the limitations, the technology owner has developed a new photochemical coating technology using visible light as an excitation source and low-cost chemicals as raw material. The invented coating technology can transform a wide variety of materials into versatile functional materials with excellent water repellency and oil attraction, providing a cost-effective solution to fabricate water-repellent materials. The technology is available for IP licensing and R&D collaboration with industrial partners who are looking for a cost-effective solution for the development of water-repellent and oil-absorbing materials. The technology owner adopts a two-step photochemical coating method using low-cost chemicals and visible light. Surface pre-treatment has also been applied so the surface modification can be applied to a wide range of surfaces, such as paper, wood, glass, natural fibers, textiles, and cement-based materials.  The features of this technology are: Low-cost and readily accessible chemicals High effectiveness (less than 0.1 wt% of coating attached on the surface) Improved hydrophobic function compared to single-step thermal method Applicable to a wide range of natural and synthetic materials Produce patterned coating by using a suitable photomask This technology can be applied to the development of functional water-repellent materials with selective oil absorption. The potential applications include but are not limited to: Environmental sector: oil pollution treatment, remediation of marine oil spills Aquaculture industry: grease cleaning, oil waste treatment Food industry: aqueous/organic biphasic separation Construction industry: waterproof cement, exterior and interior decoration Water-repellent products: filter paper, cardboard, textile, plant-based and polymer-based sponge Cost-effective method using low-cost chemicals and visible light Applicable to a wide range of natural and synthetic materials Development of functional materials with water-repellency, selective oil-absorbing and self-cleaning properties  The technology is available for IP licensing and R&D collaboration with industrial partners who are looking for a cost-effective solution for the development of water-repellent and oil-absorbing materials. Chemicals, Coatings & Paints, Environment, Clean Air & Water, Filter Membrane & Absorption Material, Manufacturing, Surface Finishing & Modification
Low-Cost Adsorbents From Spent Coffee Grounds For Industrial Wastewater Treatment
Spent coffee grounds are one of the major food waste produced globally with several million tonnes being discarded annually. It has been reported that only 6% of the original coffee cherry can be used to make a cup of coffee and the remaining balance are inedible and has no value to the industry. As such, a large amount of residue is currently generated from the coffee industry and disposed of at incineration plants or landfills.   This technology features a cost-effective and scalable thermochemical process to transform spent coffee grounds into carbon-rich solid materials, known as hydrochar, as a form of low-cost solid adsorbents for industrial wastewater treatment. Thermochemical processes are well suited for wet biomass such as spent coffee grounds and utilises mild temperature profiles under relatively low pressures. The process also has the potential to convert other kinds of food waste, such as durian husks, coconut husks, fruit peels etc, into hydrochar.This presents a sustainable solution for creating a circular economy and minimising negative impact on the environment by converting non-edible and no value food waste into a value-added product for food and water industries. The technology relates to an innovative and custom-designed thermochemical reactor capable of converting the spent coffee grounds into solid adsorbents also known as hydrochar. Hydrochar particles produced have the following attributes which include a robust mesoporous framework, higher surface area, and functionalised removal of cations, anions and organic pollutants in wastewater. Up to 80% of the organics and chemical oxygen demand can be removed after passing through the hydrochar. After water treatment usage, hydrochar can be repurposed as a soil conditioner which helps in plant germination, closing the loop on food waste. The thermochemical reactor is also capable of converting other food wastes including durian husks, coconut husks, fruit peels, and other non-edible food waste. The technology can be adopted in the food and beverage industry that are looking to upcycle the non-edible and no value food waste into value-added products, such as solid adsorbents. The carbon-rich material, hydrochar, presents a sustainable alternative as the low-cost adsorbent that can attract interest from sectors that require treatment of reject and backwash water. These include industries from semiconductors, petrochemicals, wastewater treatment, desalination, and textiles. Offers a cost-effective process to produce higher value-added products from food waste, creating a circular economy Reduced disposal cost Revenue creation from waste Tailor-made design of thermochemical reactor to produce higher surface area and better efficiency of solid adsorbents from food waste Highly scalable hydrochar, wastewater treatment, sustainable, circular economy, adsorbents, spent coffe grounds, food waste, valorisation, thermochemical Environment, Clean Air & Water, Filter Membrane & Absorption Material, Chemicals, Organic, Waste Management & Recycling, Food & Agriculture Waste Management, Industrial Waste Management, Sustainability, Circular Economy
Stable, Plant-based Photoactive Antimicrobial Agent
Antimicrobial resistance developed due to the overuse of conventional antimicrobial agents in surface coatings and consumer products is a global concern for treatment of infectious diseases in recent years. To address this concern, US FDA has banned the use of a number of conventional antimicrobial agents in consumer and healthcare products such as hand soaps and hand sanitisers. This raises the importance of alternative antimicrobial agents in antiseptic products. Photoactive antimicrobial agents are effective alternatives which produce highly reactive oxygen species (ROS) when activated by light. These reactive oxygen species display broad-spectrum biocidal activity that destroy microbes by a multi-targeted killing mechanism, which may limit the development of antimicrobial tolerance or resistance. The researchers have developed a stabilised form of a plant-based antimicrobial agent to protect it from environmental degradation. The enhanced environmental stability of this natural photoactive antimicrobial agent has made it suitable to be incorporated in various materials for the self-sterilising product applications and may provide a “greener solution” to limit the spread of pathogens and transmission of infections by indirect contact. The photoactive antimicrobial agent used is obtained from a plant which is cheap and easily available. This agent has been demonstrated in scientific literature as a natural antimicrobial as well as a photosensitiser that has broad-spectrum activity against virus, bacteria, fungus and parasites. The stabilisation of the antimicrobial agent is achieved by a single step chemical reaction. Elemental and spectroscopic analyses of the stabilised product have shown that it is more stable in the environment than its natural precursor. The photosensitisation and antimicrobial properties of the natural compound are retained after the stabilisation treatment. The preliminary studies demonstrate antimicrobial activity by visible light activation. Several methods are being developed to incorporate this antimicrobial agent in various polymers for different applications such as self-sterilising surface coating.  This stabilised form of the natural photoactive antimicrobial agent can be incorporated into coating formulations to develop antimicrobial coatings for diverse surfaces including plastics, leather, wood, concrete and metal. In addition, being developed from the natural source of plant origin, this agent may have potential applications in fabric dye, personal care products and packaging materials. The team is open to collaborate with industry partners to develop and validate the antimicrobial formulation for various potential applications. The technology can be used as a form of infection control measure to create self-sterilising contact surfaces that limit the spread of pathogens by indirect contact. Plant-based photoactive antimicrobials are more sustainable and environmentally friendly than conventional antimicrobials.  Chemicals, Coatings & Paints, Inorganic, Environment, Clean Air & Water, Sanitisation, Manufacturing, Chemical Processes, Organic, Additives, Bio-based