Innovation Partner for Impact

Grow Your Company With Our Business Advisory Services

Who We Are

IPI Singapore is a subsidiary of Enterprise Singapore, dedicated to empowering businesses through technology and innovation. We bring deep industry expertise and a proven track record of delivering impactful results for sustainable growth with our business advisory services for SMEs in Singapore.

What We Do

Through our multidisciplinary expertise and global network, we provide SME businesses with access to innovative technologies and ideas. Our business advisory services support companies in their innovation processes, including co-development, commercialisation, and go-to-market strategies for long-term success.

Learn more about IPI Singapore >

Discover tech opportunities in our Innovation Marketplace

TECH OFFERS

View all >
Bladeless Bioreactor For Cell Culture
Conventional stirred-tank bioreactors (STRs) often expose cells to high shear stress from impellers, which can damage sensitive cell types like mammalian or stem cells and reduce viability by up to 20–30%. Their complex internal structures with baffles, probes, and impellers also make cleaning and sterilization challenging, with cleaning-related downtime reported to account for as much as 30–40% of overall operation time. This technology offers a novel bladeless bioreactor that achieves homogeneous, gentle mixing without impellers, supported by a simple geometry that enhances cleanability. It enables the scalable and hygienic cultivation of sensitive cells, addressing critical bottlenecks in regenerative medicine and sustainable food production.
Feedback Driven Manufacturing & Factory Visibilities
Feedback Driven Manufacturing (FDM) is a methodology that integrates real-time data collection, analysis, and automated feedback loops directly into the manufacturing process.   Traditional factories often struggle with fragmented data, delayed quality checks, and reliance on human intervention, leading to inefficiencies, scrap, and rework. This technology addresses these pain points by continuously monitoring work-in-progress through sensors, RFID, and machine connectivity, and feeding insights back into operations at the point of production.  This innovation is particularly valuable for aerospace, oil & gas, medical devices, and other precision-driven sectors that require stringent tolerances and rapid response to deviations. Adopters of this technology are manufacturers seeking to transition toward Industry 4.0 and digital transformation without the cost and complexity of traditional MES/ERP systems. By embedding intelligence and visibility into the factory floor, FDM bridges the gap between raw data and actionable decision-making, creating a scalable, sustainable foundation for smart manufacturing.
Clinical Decision Support Tool for Team-Care Deprescribing and Polypharmacy Management
The technology is an advanced Clinical Decision Support System (CDSS) designed to streamline and enhance the process of medication review, with a strong focus on safe deprescribing practices. Built on evidence-based guidelines and best clinical practices, the application provides healthcare professionals (doctors, pharmacists, and nurses) with reliable recommendations to optimize medication regimens, particularly for older adults who are at higher risk of polypharmacy and adverse drug events. This team-care deprescribing application can be seamlessly launched across various points of care: hospitals, clinics, nursing homes, or community health settings. This enables clinicians to work collaboratively in reducing medication burden while safeguarding patient safety. By integrating into existing workflows, it not only improves efficiency and decision-making but also supports higher standards of clinical care, leading to better health outcomes and quality of life for patients.
Stereolithography 3D-printing of Transparent Spinel Ceramics
There is a growing global demand for complex-shaped transparent ceramics such as spinel in specialised lenses, optoelectronics, electronic, semiconductor and biomedical applications. However, large-scale commercial production of ceramics parts of high transparency and complex geometries has not been fully established. At present, most transparent ceramics are commercially fabricated in simple geometries using conventional methods such as injection molding or hot-pressing. 3D-printing techniques such as direct ink-writing, digital light processing and stereolithography has enabled the fabrication of ceramic parts of higher complexities, but the optical transparency of such ceramic parts remains limited. This technology is among the first to provide high-transparency 3D-printed spinel ceramics with highly complex design. It integrates proprietary spinel ceramic paste, 3D printing process, and specialized heat treatment process. The resulting 3D-printed ceramics possesses a high relative density, exceptional mechanical strength, good optical transparency and wide design flexibility. Together, these advantages position the material as a strong alternative to current options such as 3D-printed silica glass, yttrium aluminum garnet (YAG), and sapphire. Moreover, compared to conventional manufacturing methods, 3D-printed spinel ceramics significantly reduce material waste while shortening the prototyping to production timeline. This appeals to both industry application and sustainability. This technology supports a wide range of design complexities, resolutions, and application needs. The technology owner is currently looking for more industry collaborators that are interested in exploring and pushing the boundaries for 3D-printed transparent ceramics. They are able to offer flexible co-development modes for specific use cases for partners with or without existing in-house 3D printing capabilities.
On-Device AI Marine Cleaning Robot
Marine and river pollution, particularly during coastal disasters, threatens the biodiversity of affected areas due to the inflow of hazardous contaminants. In addition, with the increasing use of plastics, microplastic pollution in water bodies is also on the rise. To address such marine pollution, cleanup operations must be carried out promptly to reduce the negative impact on the environment. However, these operations are typically costly, require extensive coordination, and are cumbersome. A Korean startup has designed and developed an autonomous floating robot capable of accurately detecting and collecting marine debris in real time during coastal disasters. This compact robot is built to remain durable and reliable even under harsh weather conditions. Equipped with proprietary AI algorithms as well as LiDAR and vision sensors, it enables intelligent perception and decision-making, adapting to changing marine environments such as obstacles, waves, and currents. With its on-device AI functionality, it can operate independently without relying on external communication networks. This provides a practical solution for faster and more cost-effective maritime emergency response, while delivering measurable ESG improvements. The technology owner is seeking marine environment service providers and government agencies that are open to conduct pilot trials, as well as partners to jointly develop complementary technologies to further enhance the robot’s capabilities.
Compact Optical Lattice Clock for Precise, Accurate Timekeeping
With the growing demand for telecommunication networks (5G networks), global navigation satellite system, GNSS, (autonomous vehicles) and geoscience (disaster monitoring), precise timekeeping is a critical piece that ensures these functions work seamlessly and efficiently. Without this vital function, these capabilities will become inaccurate, unreliable and vulnerable to attacks and tampering. Currently, this timekeeping function uses conventional caesium atomic clocks which are reaching its inherent limits in terms of synchronisation and to accommodate for a more digitalised world.  The technology owner has leveraged on their technical expertise to develop a commercialised strontium optical lattice clock as the next generation of precise timekeeping to address the existing inherent limitations. With the frequency output light stablished to the resonant frequency of strontium atoms, it provides about 1000 times higher precision compared to existing commercialised caesium atomic clocks while having a relatively compact formfactor. The system also enables a lower systematic uncertainty level, hence a higher accuracy and precise time and frequency measurement. The system is designed and engineered for being user friendly with an automatic operation and east of start-up and maintenance.
Solution to Repair Concrete Cracks, Mitigate Rebar Corrosion and Concrete Carbonation
Concrete deterioration caused by cracking, carbonation, and rebar corrosion represents a multi-billion-dollar global challenge. The global concrete repair market is valued at approximately USD 20 billion. Current methods are often labour-intensive, disruptive, or temporary, creating a strong demand for durable, cost-effective, and sustainable repair solutions. This innovation addresses these needs with a two-part treatment system that restores durability and prevents further structural damage: Water-based Concrete Sealer: Applied directly to concrete and steel surfaces, it prevents the ingress of water and corrosive agents (e.g., chlorides). This reduces the rate of concrete carbonation and rebar corrosion, while also functioning as an anti-corrosion coating for steel reinforcement. Micro-cementitious Crack Injection Sealant: A flowable, non-shrink material designed for sealing narrow concrete cracks (≥1.0 mm). When injected into damaged concrete, it consolidates the structure, re-alkalises adjacent carbonated concrete, and protects embedded steel rebars. By reinstating the passivating layer around embedded bars, it slows corrosion and reduces the likelihood of further cracking. Unlike traditional polyurethane injections, it provides durable, long-lasting repair without shrinkage. Both the water-based sealer and micro-cementitious sealant can be used independently or in combination, depending on the protection and repair requirements. This technology is available for R&D collaboration, IP licensing, and test-bedding with industrial partners in the construction and infrastructure sectors.
Topology Optimization Platform for Thermal-Fluid Systems
Heat management has become a critical bottleneck in advanced industries such as electric vehicles, aerospace, data centers, and next-generation electronics. Traditional design processes rely heavily on expert intuition and repetitive simulation, requiring weeks to explore only a narrow design space. This results in high costs, limited performance improvements, and significant delays in bringing products to market.  The presented technology introduces a thermal-fluid topology optimization engine that autonomously generates optimal structures for cooling and fluid management. Unlike conventional parameter studies, this approach explores the entire design space and discovers novel, high-performance solutions beyond human intuition. By integrating multi-fidelity modeling and high-accuracy simulations with lightweight surrogate models, the technology reduces design time from 20-30 days to just 3-5 days, while improving cooling efficiency by more than 30%.  By combining breakthrough computational science with industrial applicability, this technology provides a next-generation design foundation for sectors where thermal performance is a decisive factor for competitiveness. Potential adoptors of this technology includes manufacturers facing urgent thermal challenges: automotive OEMs, aerospace suppliers, electronics and semiconductor companies, and data center operators. These industries demand shorter design cycles, reduced CO₂ emissions, and higher product reliability.  The technology owner is seeking to collaborate with design and manufacturing companies from different industries looking to optimise heat transfer in thermal-fluid systems. The technology owner is also open to partnerships with Computer-Aided Engineering software providers who are interested to intergrate this technology into a platform. 

TECH NEEDS

View all >
Seeking Technologies to Convert CO2-Derived Methanol to Polyoxymethylene
Polyoxymethylene (POM) is a high-performance engineered thermoplastic widely used in the automotive, electronics, and industrial sectors due to its excellent mechanical strength, chemical resistance, and dimensional stability. However, its conventional production relies heavily on formaldehyde derived from fossil-based methanol, presenting significant sustainability and carbon footprint challenges. Amid growing environmental concerns and global net-zero commitments, carbon dioxide (CO₂) utilisation is emerging as a promising approach for transforming waste carbon into value-added materials. Among various CO₂-derived chemicals, methanol stands out as a viable and sustainable feedstock, offering a low-carbon alternative to traditional petrochemical-based inputs. To advance circular economy goals and reduce reliance on fossil resources, a Singapore-based SME is seeking innovative and scalable technologies that can convert CO₂-derived methanol into POM or its intermediates such as formaldehyde or trioxane. Proposed solutions may include end-to-end pathways using commercially viable CO₂-derived methanol to produce POM, or novel routes that directly convert CO₂ into POM through intermediate steps.
Seeking Solutions For De-oiling of Processed Food Waste Substrate
In 2023, Singapore generated approximately 755,000 tonnes of food waste, with only 18% recycled, underscoring the urgent need for innovative waste management strategies. The nation's Zero Waste Master Plan have significantly propelled efforts to transform food waste into valuable resources. Food waste valorisation involves pre-processing steps like drying, microbial fermentation, or enzymatic breakdown into biomass which can convert nutrients into suitable ingredients for animal feed, food ingredients and biofuels.  A significant technical challenge arises for companies handling heterogeneous municipal food waste in Singapore due to its high oil content. The presence of oil may potentially lead to fouling, clogging of processing equipment, reducing processing efficiency. On the contrary, oil is also a valuable ingredient for biofuel. Therefore, the company is seeking for solution providers who can de-oil from the biomass.
Seeking Solutions To Reduce Sodium Content In Food
According to the Health Promotion Board (HPB) in Singapore, 90% of Singapore residents' consumption of sodium exceeds the daily recommended intake, with the average consumption at 3620 mg, nearly double of the recommended 2000 mg per day. As a result, one in six Singapore residents report health problems like hypertension and hypolipidaemia. In an effort to curb this, HPB launched the "Less Salt, More Taste" campaign in 2024 to encourage the food manufacturing and food service industry to change their recipes and add less salt and sauces, or switch to use lower-sodium alternatives for salt, sauces and seasonings. Manufacturers are also encouraged to increase the supply of lower-sodium ingredients for the food service sector. Consumers are also encouraged to choose low sodium options, or use less salt in their home cooking. This sodium reduction strategy aims to reduce Singaporeans’ sodium intake by 15% by 2026.   

Our Corporate Partners

OSIM
Panasonic Group
Haier

Our Success Stories

Learn how our innovation services have enabled organisations to succeed in their innovation journey.

Impact for FOOD & NUTRITION

Whisking Innovation into Everyday Foods
Find out how GIIAVA launches their innovative new products into the plant-based market with help from IPI Singapore and Republic Polytechnic. The Client GIIAVA Singapore is a long-established emulsifier manufacturer exploring new opportunities in plant-based innovation. Objective To commercialise a proprietary plant-based egg replacer and identify new growth opportunities. What IPI Singapore Did IPI Singapore provided strategic advice on business...

Impact for SUSTAINABILITY

Rethinking the Everyday Package
Singapore-based sustainable packaging innovators, Aegis Packaging, are gunning for growth with the help of IPI Singapore’s ecosystem of partners and innovation advisors. The Client Aegis Packaging is a Singapore-based sustainable packaging innovator with a patented recyclable barrier coating, O2X™, aiming to scale its business across Southeast Asia and beyond. Objective To strengthen internal R&D and quality assurance capabilities in line...

Impact for TRADE & CONNECTIVITY

Step by Step: Refining Products and Strategies with Expert Guidance
Find out how two local SMEs turned to IPI’s innovation advisors to improve production methods and market strategy.   Traditional kueh and cleaning supplies may not be the first industries one thinks of when it comes to innovation, but in the competitive landscape of Singapore’s business ecosystem, consistent innovation and improvement are key to staying ahead. Two local SMEs, Lek...