innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Durable Filtration Membranes and Systems for Challenging Wastewater
Industrial wastewater treatment faces persistent hurdles, especially in oil and gas, petrochemical, metal finishing, and food processing industries. Conventional membranes suffer from rapid fouling when exposed to high oil and grease loads, degrade under extreme chemical cleaning, and struggle to maintain flux recovery. This often results in frequent downtime, costly replacements, and an inability to consistently meet discharge compliance. The technology is a next-generation ultrafiltration (UF) membrane engineered for highly aggressive industrial environments. Built from military-grade, chemical-resistant polymers, the hollow fiber design achieves high flux with low fouling, even under extreme conditions such as pH 1–14, temperatures up to 80 °C, high salinity, and oily streams containing up to 5% oil. Unlike conventional polymer membranes, this solution maintains long-term performance through repeated high-caustic (pH 14+) and chlorine (10,000+ ppm) cleanings. It consistently delivers over 95% flux recovery after aggressive NaOH and NaOCl cleaning, preventing irreversible fouling and reducing replacement frequency. Optimized porosity and geometry allow the membranes to handle heavy oil loads while validated cleaning protocols ensure rapid regeneration and stable long-term operation.The proprietary polymer chemistry and crosslinking techniques that form the basis of the membrane provide a competitive edge and ensure consistent performance. The technology owner seeks collaboration with Institutes of Higher Learning, large industrial players with ongoing water reuse, wastewater, or zero-liquid-discharge initiatives, and engineering, and construction firms with opportunities for R&D collaboration, test-bedding, and licensing. The ultrafiltration membranes are engineered for superior performance in chemically aggressive and high-fouling industrial environments. Constructed from military-grade, chemically inert polymers, the membranes withstand extreme cleaning cycles and deliver long-term operational stability. Chemical Resistance: Compatible with pH ranges from 1 to 14, including exposure to high-concentration cleaning agents such as NaOH (caustic soda) and NaOCl (sodium hypochlorite) at levels exceeding 10,000 ppm chlorine. Flux Recovery: Regular chemical cleaning restores more than 95% of original flux, ensuring sustained throughput and reduced downtime. Oil Handling Capacity: Effectively processes feed streams with up to 5% oil content without pore blinding or irreversible fouling. Thermal Tolerance: Operates reliably at temperatures up to 80°C, making it suitable for high-temperature effluents. Salinity Resistance: Designed to handle high total dissolved solids (TDS) in brines, leachates, and process waters. Energy and Petrochemicals: Refinery effluent treatment and reuse, oil and gas produced water management. Heavy Industry: Metal finishing, electroplating wastewater recovery, and chemical recovery/concentration processes. High-Salinity Waste Streams: Landfill leachate treatment and high-TDS brine management for water reuse. Food and Agriculture: Wastewater from food and rendering (blood, fats, oils) and vegetable oil separation/recovery. Built for extreme wastewater conditions: high oil, salinity, and chemical loads Cuts operating costs with longer membrane life and optimized cleaning Boosts plant efficiency and reliability Offered as standalone membranes or complete systems Environment, Clean Air & Water, Filter Membrane & Absorption Material
Food Filtration Membranes and Systems
Traditional membrane technologies used in the food industry  (e.g., diatomaceous earth or plate-and-frame systems) often face limitations such as significant waste, limited reusability, inconsistent quality, and labor-intensive maintenance. This advanced food-grade membrane technology overcomes these challenges by utilizing hollow fibre filtration systems engineered for high flux, strong chemical resistance and long operational life. It enables precise separation, clarification, and concentration of food and beverage products while eliminating the need for filter aids and significantly reducing water, energy, and waste usage. Fully compatible with clean-in-place (CIP) systems, the technology supports automated, hygienic, and sustainable production workflows. Its adaptability across various applications—including beer clarification, soy sauce concentration, dairy processing, and plant extract purification—makes it a scalable solution that aligns with industry demand for efficient, low-waste, and high-quality food processing. These advanced food-grade hollow fibre membranes are designed for efficient, high-performance filtration across various food and beverage applications. Featuring robust polyethersulfone (PES) or polyvinylidene fluoride (PVDF) materials, the membranes are resistant to harsh cleaning chemicals and support clean-in-place (CIP) processes, significantly reducing maintenance downtime. Key specifications include: Pore sizes: Microfiltration (MF) 0.1–0.5 μm and Ultrafiltration (UF) 5–100 kDa High flux rates up to 80 LMH depending on feed characteristics Operating temperature range: 5°C to 80°C pH tolerance: 2–14 (short-term up to 13) Compatible with high-salinity and protein-rich feeds Pressure rating: up to 4 bar (60 psi) Breweries seeking sustainable and efficient beer clarification systems Soy sauce and condiment manufacturers needing salt-tolerant concentration systems Juice and plant extract producers looking for clear, pure outputs Dairy processors requiring high-performance separation for proteins or lactose Food manufacturers aiming to meet stricter hygiene and sustainability standards Plant-based proteins production aiming  for precise separation and concentration of proteins without the need for filter aids, thereby reducing waste and improving yield Zero waste Zero liquid discharge Only multiple use polymeric membranes that can be CIP ed in process Reduces OPEX costs Improves plant efficiency Provide membrane and complete systems Food, Oil Filtration, High Suspended Solids, Emulsified Oil, High Performance Membrane Systems Environment, Clean Air & Water, Filter Membrane & Absorption Material, Foods, Quality & Safety, Processes
Air Purification Technology for Energy Efficiency and Indoor Air Quality Enhancement
Facing the dual challenge of high energy consumption and the need for effective air purification in urban environments, this solution optimizes air filtration in HVAC systems. By employing advanced sound wave technology, the specialized emitter agglomerates fine airborne particles, making them easier to capture and significantly reducing the pressure drop across air handling units. This method not only lowers energy usage but also extends filter lifespan, cutting operational costs and maintenance needs. Ideal for building operators and industries that prioritize energy efficiency and superior indoor air quality, such as commercial real estate, hospitals, and manufacturing facilities, this system meets stringent G4 filtration standards and achieves performance levels equivalent to MERV 13 and MERV 14 filters.  The technology presents a cost-effective solution that significantly enhances HVAC performance and air quality, positioning itself as a sustainable investment for facilities dedicated to optimizing operational efficiency and environmental health. It improves motor energy consumption by up to 45%, while also enhancing air quality and reducing operational costs in HVAC systems. The technology owner is actively seeking collaboration partners for research and development, as well as opportunities for test-bedding within the HVAC systems field to enhance indoor air quality. Patented Emitters: Positioned along the edges of the system’s frame, these emitters work in tandem with the filter core to reduce pressure drop and enhance filtration efficiency. By altering the path of particulate matter (PM) using sound waves, the system requires less fan power to deliver the same volume of clean air, resulting in significant energy savings. Filter Media: High-quality synthetic media designed with environmental sustainability in mind. Efficiency: G4-rated performance, with MERV 13/14 efficiency validated through rigorous testing. Healthcare: Ensure sterile environments with advanced air purification and energy Saving capabilities Entertainment, Hospitality, and Education: Reduce energy consumption and improve air quality for public spaces. Construction and Real Estate: Improved HVAC performance in commercial buildings. Data Centre: Demanding Eco-energy solutions to enhance CRAC, Fan Wall, HVAC system energy reduction. Manufacturing: Efficient air filtration in industrial settings. The global market for advanced air filtration systems is robust, valued at approximately USD 4 billion and experiencing rapid growth. These systems enhance filtration efficiency by 50% and reduce pressure drops by up to 70%, significantly improving HVAC performance and energy savings. They also allow fan motors to lower energy consumption by up to 50%, maintaining optimal air quality. With an 80% increase in filtration efficiency, these technologies effectively capture more airborne pollutants, offering superior air purification compared to similar market solutions.  This advanced air filtration technology significantly outperforms traditional systems by utilizing sonic vibration to extend the travel distance of airborne particles, enhancing their capture by filter fibres for a 50% boost in filtration efficiency. Additionally, it reduces pressure drops across air handling units, enabling up to 50% energy savings and lowering operational costs while supporting sustainability goals. The UVP lies in its patented sound wave technology that uniquely alters the path of particulate matter, delivering unmatched performance and energy efficiency. This makes the system versatile for use in diverse settings like hospitals, data centres, and commercial buildings. energy saving, hvac, air quality, esg, green building, air filtration, carbon emission, filtration Environment, Clean Air & Water, Filter Membrane & Absorption Material, Sustainability, Sustainable Living
High-Performance Boron Absorbents With Flexibility and Minimal Environmental Footprint
Boron is an essential micronutrient necessary for the growth and development of plants, animals, and humans, while also playing a critical role in industries such as manufacturing, agriculture, and semiconductors. However, while beneficial in trace amounts, excessive boron levels can be toxic. High concentrations in drinking water pose significant health risks, particularly to reproductive and developmental systems, while boron contamination in industrial water supplies can degrade process efficiency and product quality. Current methods for boron removal, such as reverse osmosis and ion exchange, face significant limitations. Reverse osmosis struggles to remove boron efficiently, especially in seawater desalination, often requiring multiple stages and high energy consumption to achieve acceptable levels. Ion exchange resins pose low loading capacity and require massive harsh chemicals for regeneration.  The proposed boron absorption technology provides a solution that efficiently removes boron from diverse water sources, including seawater and wastewater. It effectively reduces boron levels to meet stringent standards, such as drinking water limits of less than 0.5 mg/L. The technology aligns with sustainability goals, consuming fewer chemicals and exhibiting strong recovery stability. Additionally, the proposed absorbent is flexible, customizable and compatible with various water treatment applications. The technology owner seeks partnerships to integrate this solution into existing water treatment systems or collaborate on industrial-scale demonstration projects to address boron contamination across multiple sectors. High Efficiency: Effectively reduces boron concentrations in various water sources, including seawater and wastewater, meeting stringent standards (e.g., <0.5 mg/L for drinking water). Sustainability: Consumes trace chemicals during the process and offers robust regeneration stability. Flexible & Customizable: Sponge-like composite, elastic and flexible, allowing easy scalability for large-scale applications. Cost-Effective: The technology lowers operational costs due to its high performance and reduced chemical usage. Desalination Plants: Particularly useful in seawater desalination, where boron concentrations must be reduced to meet drinking water standards. Drinking Water Systems: Ensures that water meets strict regulatory standards. Industrial Wastewater Treatment: Removes boron from industrial effluents, especially in sectors that release boron-laden waste, ensuring compliance with environmental regulations. Semiconductor Industry: Used to purify water in semiconductor manufacturing, where trace amounts of boron can affect production quality. Superior Boron Removal Efficiency: Achieves boron concentrations below 0.5 mg/L, meeting stringent drinking water standards, which is a challenge for existing methods like reverse osmosis and ion exchange. Cost-Effectiveness: The high-performance absorbent minimizes chemical input during regeneration, contributing to both cost reduction and sustainability. Robust Recovery and Stability: Exhibits strong regeneration stability over >15 cycles, maintaining its high performance. boron removal, column adsorption, low environmental footprint, flexible, sustainable Environment, Clean Air & Water, Filter Membrane & Absorption Material, Sustainability, Sustainable Living