innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Lixiviant for High Efficiency Extraction of Palladium (Pd) from Electronic Waste
The exponential growth of electronic waste (E-waste) generation is proliferating due to the ever-increasing demand for electrical and electronic equipment (EEE) driven by industrial revolution and development. The COVID-19 crisis has further accelerated the shift towards digital transformation, contributing to an upsurge in E-waste generation. To-date, the industrial practices of extracting palladium (Pd) from electronic waste and mining ores rely on hydrometallurgy techniques using highly corrosive acids, typically aqua regia at elevated temperature. The process poses severe hazards to workers and lead to environmental pollution. Aqua regia’s capability to dissolve many various metals results in low selectivity for Pd. Despite ongoing efforts to develop alternative methods, these methods often prove impractical for industrial adoption. The technology provider has developed a proprietary lixiviant capable of extracting palladium up to 4,000 ppm at saturation with high extraction efficiency and selectivity within 12 hours. This lixiviant is facile, cost-effective, and significantly less corrosive and hazardous compared to current industrial practices. Substituting fuming aqua regia with this lixiviant could enhance the protection of workers and environmental safety. Importantly, the proposed technology is highly compatible with existing hydrometallurgy processes, eliminating the need for companies to change their current infrastructure. An E-waste industry partner has successfully conducted a pilot-scale (5-Litre scale) evaluation, validating the effectiveness and applicability of the lixiviant on their Pd-coated samples. The technology provider is actively seeking industry partners interested in test-bedding and licensing of this technology. Low cyanide concentration (< 50 ppm) stabilized in alkaline solution Optimal operating temperature of 90°C High selectivity (> 86%) and high extraction rate (> 86%) of palladium Cost-effective at ≤ USD 2.12/L extracting up to 4,000 ppm palladium at saturation within 12 hours Easy adoption and high compatibility with existing industrial hydrometallurgy systems Improve workplace safety and health which better protects workers and the environment Electronic wastes, such as Pd-coated connectors, Pd-coated wire bonding, etc. Pd-coated industrial wastes Recovered palladium can be further refined for resale and reuse In recent years, many countries have mandated environmental responsibilities to electronic manufacturers to establish producer recycling programs and ban E-waste disposal into landfills. E-waste contains precious metals, such as palladium, gold and silver that are highly sought-after by E-waste recycling companies due to their scarcity, high value and demand, and are actively traded as commodities over the last decades. The extraction of precious metals from E-waste is not only commercially attractive but also aligns with Corporate Social Responsibility and Environmental, Social, and Governance goals for resource recovery and environmental protection. The global E-waste market size was valued at USD 52.6 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 12.1% from 2022 to 2032, to reach USD 160.2 billion (Market.us, 2023). The proposed technology features a proprietary lixiviant capable of extracting palladium up to 4,000 ppm at saturation with a high extraction efficiency (≥ 89%) and high purity (≥ 92%). This cost-effective lixiviant is significantly less hazardous as compared to current industrial practices, thus better protecting workplace safety and health. Notably, the technology is compatible with existing hydrometallurgy processes and has been successfully verified at pilot-scale (5-Litre) in collaborating with an industry partner. Hydrometallurgy, palladium recovery, palladium extraction, palladium recycling, precious metal recovery, precious metal extraction, precious metal recycling, electronic waste (E-waste) recycling, electronic waste treatment Chemicals, Catalysts, Waste Management & Recycling, Industrial Waste Management
Cost-Effective Protective Coating Enhancing Durability of Electrode Catalyst
Electrolysis has diverse applications across various sectors, such as household and industrial electrolyzed water treatment, soda electrolysis, electrolytic plating, electrodeposition, and hydrogen generation. In electrolysis using insoluble electrodes, the electrocatalyst acting as the reaction field for the electrode reaction undergoes gradual abrasion. Given the high cost of precious metals (i.e., platinum group compounds) used as catalysts, protecting the catalyst and reducing the wear rate are crucial for extending the lifetime of electrodes and reducing the maintenance cost. Current technologies include multilayer electrodes that have a surface layer of noble metal oxide on the electrocatalyst to reduce catalyst wear. However, this method proves more expensive than ordinary insoluble electrodes. Additionally, the surface layer cannot be recoated. To address the challenge, the technology owner has developed a proprietary protective coating that effectively protects the catalyst on the surface of existing insoluble electrodes. This solution enables effective electrode protection through an inexpensive coating, reducing catalyst consumption and electrode replacement frequency. The coating can be reused by recoating the electrode, also contributing to the perspective of “Circular Economy”. The technology owner is seeking R&D collaboration with industrial partners such as electrode manufacturers, coating manufacturers, and companies utilising insoluble electrodes in electrolysis, especially electrolytic plating and metal recovery.  This unique coating, made of special silicone and conductive particles, can be applied to the catalyst surface and cured to reduce catalyst wear. Key features of this technology include: Improved electrode durability: double the replacement interval Excellent chemical resistance: capability to withstand harsh liquids such as strong acids and strong alkalis Optimal performance: good heat resistance, conductivity, and adhesion to the base material Efficient development: shorter development time and lower implementation cost compared to alternative methods such as electrolytic control and diamond coating Cost-effective solution: reduce maintenance cost and utilisation loss in the upstream process of electrolysis Circular economy contribution: reusable by recoating the electrode This technology can be used in handling harsh liquids such as strong acids and strong alkalis, addressing the challenge of electrode durability. It is mainly intended for the recovery of metals through electrolysis, especially targeting aqueous solutions containing metal ions. This is particularly useful for processes such as electrolytic plating and etching effluents in semiconductor manufacturing. In the future, the technology owner is also exploring the potential applications of this technology in water electrolysis electrodes and the use of conductive coatings beyond electrodes. Double the lifetime of the electrode using an inexpensive coating Can be reused by recoating the electrode Reduce the replacement frequency and maintenance cost Adaptable to existing coating (painting) facilities without modification Coatings, Electrode Catalyst, Electrolysis, Metal Recovery, electrolytic plating, recoating, reused Chemicals, Coatings & Paints, Manufacturing, Chemical Processes, Sustainability, Circular Economy
Generative AI Technology for Business Process Automation and Customer Engagement Improvement
Enterprises are constantly looking for ways to improve operational efficiency and reduce costs. Traditional automation has limitations, especially when it comes to tasks requiring creativity or complex decision-making. Generative AI has emerged as a transformative technology that addresses a variety of pain-points faced by enterprises across industries. This technology solution offers a seamless integration of large language models (LLMs) and Generative AI fuctions with existing infrastructure, enhancing AI's impact by automating the flow of information and standardizing AI usage within your enterprise. This empowers customer support and operations teams to provide quick and accurate responses, significantly improving service delivery and operational efficiency.     This Generative AI technology solution is powered by a combination of technologies and methodologies to ensure a high level of customer engagement, personalization, and efficiency. Here's a breakdown of the key technology components and how they work together: 1. Natural Language Processing (NLP) and Understanding (NLU) Functionality: These AI components are the core of the chatbot's ability to understand human language. NLP breaks down and interprets the user's input (text or voice), while NLU comprehends the intent behind the input. How It Works: When a customer sends a message, NLP and NLU analyze the text to grasp the query's context and intent. This understanding allows the chatbot to generate an appropriate response. 2. Machine Learning (ML) Functionality: ML algorithms enable the chatbot to learn from interactions and improve responses over time. It analyzes patterns in data to predict and enhance future conversations. How It Works: Through continuous training on customer interactions, the chatbot becomes better at predicting user needs and personalizing responses, thereby improving engagement and satisfaction. 3. Integration APIs Functionality: APIs allow the chatbot to interact with external systems and databases, enabling it to retrieve and update information in real-time. How It Works: When a customer asks a question requiring specific data (e.g., account balance), the chatbot uses APIs to fetch the relevant information from the backend systems and deliver it to the user. 4. Sentiment Analysis Functionality: Sentiment analysis technology assesses the emotional tone behind a user's message, helping the chatbot to tailor its responses more empathetically. How It Works: By analyzing the sentiment of the user's text, the chatbot can adjust its tone and responses to better align with the user's emotional state, enhancing the engagement quality.         The technology can be applied across various domains such as customer service, HR recruitment, and internal operations efficiency. Its applications include: enhancing customer interaction through WhatsApp and omnichannel chatbots, supporting staff with AI-driven tools for operational efficiency, tailoring GPT models for industry-specific needs and customized requirements, automating email categorization, deriving insights from data analytics and customer feedback. These applications aim to streamline processes, personalize customer engagement, and optimize decision-making through data-driven insights. The unique value proposition lies in its comprehensive suite of AI-driven solutions designed to automate and enhance both customer engagement and internal operations. Their offerings range from WhatsApp messaging for improved customer interaction to omnichannel AI chatbots, specialized AI for HR and staff support, to industry-specific GPT models. They focus on personalizing customer experiences, streamlining recruitment processes, and delivering actionable insights through data analytics, positioning themselves as a versatile AI partner for businesses looking to leverage advanced technologies for operational efficiency and customer satisfaction. Infocomm, Artificial Intelligence
Effective and Versatile Deodorant Solution for Odor Removal
Issues associated with odor generation present significant challenges in various aspects of daily life, encompassing unpleasant smells from various sources such as toilets, kitchens, pets, tobacco, hospitals, and transportation. These unwanted odors have a detrimental impact on individual well-being, social interactions, and overall environmental quality. Deodorants play a crucial role in addressing these challenges, fostering a more comfortable and hygiene environment. However, conventional deodorants primarily rely on masking the unwanted odors with a strong fragrance, resulting in a slow and ineffective deodorization process, particularly against strong smells. The technology owner has developed a proprietary formulation that offers an effective deodorization approach. Unlike common deodorants, the unique deodorant using the proprietary formulation can remove the sources of unpleasant smells through chemical reactions. It demonstrates remarkable efficiency against a broad spectrum of odors, including those from rotting fish and meat, rotting eggs and milk, rotting vegetable waste, ammonia in toilets, sweat, and body odor. This innovative solution has the potential to revolutionise odor control across diverse scenarios. The technology owner is seeking R&D collaboration with industrial partners who are interested in incorporating this deodorant into their products and applications. Compared to conventional deodorants, this deodorant quickly interacts with unpleasant odor molecules and immediately envelops, degrades, and neutralizes the molecule, eliminating the unpleasant odor around it. Key features of this technology are: Universally against the four major malodors (i.e., ammonia, trimethylamine, methyl mercaptan, and hydrogen sulphide) Distinctive technique utilising zinc ions to decompose hydrogen sulfide, the source of putrefaction and fecal odor Effectively decompose human body odor and pet odor by using inorganic salts Reliable and efficient deodorization with a high deodorizing rate This innovative deodorant can be used in many situations since it is universally effective against the major odors in daily life. Potential scenarios include (but are not limited to): Transportation: public transportation or private cars. It effectively neutralises unpleasant odors during long trips, ensuring a comfortable space for passengers. Medical institutions: hospitals and clinics. It eliminates various odors occur in health care facilities, maintaining a comfortable environment for patients and staff. Hotels and accommodation: hotel rooms, shared spaces, and the entire accommodation. It provides a clean and comfortable environment, accommodating different guest preferences. Educational institutions: school and university classrooms, libraries, and common areas. It delivers safe and effective deodorizing effects for diverse population, including youth. Event Venue: indoor and outdoor events, concerts, and sporting occasions. It is particularly useful for odor control in places where many people gather. Effective deodorization against four major odors Enhance high safety in human health Low price despite its high effectiveness Customisable to meet different specifications Deodorization, Environment, Housing, Public, Odor Materials, Composites, Chemicals, Additives, Sustainability, Sustainable Living
Tactile and Temperature Sensing Electronic Skin for Healthcare and Cosmetic Applications
The human skin is the largest organ of the body, capable of extremely sensitive sensing ability and functional characteristics including elasticity, mechanical resistance and self-healing due to different mechano-receptors and sensory nerves. Electronic skin (e-skin) or synthetic skin, is a thin electronic material that stimulate the characteristics of the skin, making it possible for applications in prosthetics, robotics, wearables devices and percutaneous drug delivery systems. This patented technology is an e-skin with tactile, pain and temperature sensing, capable of differentiating various mechanical forces, sensory heat or moisture concurrently. It is a promising technology for healthcare applications. Currently, majority of the sensors in the market for healthcare are in rigid forms and for small application areas, which make it difficult for portable and wearable applications in large surface areas. This thin film flexible electronic skin can detect applied pressure and temperature on it. The skin’s electrical resistance varies with applied pressure and temperature. By measuring the skin’s electrical resistance, the applied pressure and temperature can be derived. The skin can be made stretchable to be covered on irregular curved surfaces. These features complement the drawbacks of rigid sensors for healthcare applications. The technology owner is looking for collaborators in the medical and robotics sectors and potential opportunities outside of healthcare such as beauty and cosmetics. Skin size, shape, density: customizable Pressure and temperature detection ranges: customizable (up to 5000KPa and 120°C) Single sensor repeatability: less than 10% Thickness: less than 1mm Communication port: via digital IO, UART, USB, Bluetooth, and Wi-Fi Data storage: SD card or other storage media Working voltage: DC 3-5V, or customizable The electronic skin can be: Embedded in insole for fall risk warning, fall detection, gait analysis, foot, and leg abnormality detection. Embedded in rehabilitation glove for finger gripping strength assessment. Embedded in surgical glove, robot end-effector and body for tactile sensing and force feedback control. Embedded in bed for bed sore prevention. Covered on artificial limb for pressure, temperature, and collision sensing. Deployed at shower room or bed side for fall detection. Used for teeth alignment and tongue muscle strength measurement. Used for training of doctor to operate surgical robot, under AR, MR, metaverse environment. Wearable electronic devices with skin-like properties will provide various applications for monitoring of human physiological signals such as body pressure, temperature, motion, and disease-related signals.  Low cost.  Customizable and durable electronic skins based on requirements. Compared with rigid sensors, these electronic skins have soft surfaces, can be made in large size, and covered on various flat and curved surfaces.  Possible to develop an interface to connect the e-skin to human neural brain or spinal cord. API under Windows, Linux, Android, and iOS to facilitate development of various applications.  Electronic skin, Tactile sensing, Pressure mapping, Temperature mapping Electronics, Sensors & Instrumentation, Personal Care, Cosmetics & Hair, Healthcare, Medical Devices, Infocomm, Internet of Things
SeaLLMs - Large Language Models for Southeast Asia
Despite the remarkable achievements of large language models (LLMs) in various tasks, there remains a linguistic bias that favors high-resource languages, such as English, often at the expense of low-resource and regional languages. To address this imbalance, we introduce SeaLLMs, an innovative series of language models that specifically focuses on Southeast Asian(SEA) languages. SeaLLMs are built upon the Llama-2 model and further advanced through continued pre-training with an extended vocabulary, specialized instruction and alignment tuning to better capture the intricacies of regional languages. This allows them to respect and reflect local cultural norms, customs, stylistic preferences, and legal considerations. Highlights: The models' attunement to local norms and legal stipulations—validated by human evaluations—establishes SeaLLMs as not only a technical breakthrough but also a socially responsiveinnovation. SeaLLM-13b models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open-source models. SeaLLMs outperform mainstream commercialized models for some tasks in non-Latin languages spoken in the region, meanwhile, SeaLLMs are efficient, faster, and cost-effective compared to commercialized models. The SeaLLMs went supervised finetuning (SFT) and specialized self-preferencing alignment usinga mix of public instruction data and a small number of queries used by SEA language native speakers in natural settings, which adapt to the local cultural norms, customs, styles and laws inthese areas. SeaLLM-13b models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open source models. Moreover, they also outperform other mainstream commercialized models in tasks involving very low-resource non-Latin languages spoken in the region, such as Thai, Khmer, Lao,and Burmese. Training Process Our pre-training data consists of more balanced mix of unlabeled free-text data across all SEA languages. We conduct pre-training in multiple stages. Each stage serves a different specific objective and involves dynamic control of (unsupervised and supervised) data mixture, as well as data specification and categorization. We also employ novel sequence construction and masking techniques during these stages.Our supervised finetuning (SFT) data consists of many categories. The largest and most dominantof them are public and open-source. As the aforementioned are English only, we employed several established automatic techniques to gather more instruction data for SEA languages through synthetic means. For a small number of SFT data, we engaged native speakers to vet, verify and modify SFT responses so that they adapt to the local cultural customs, norms, and laws. We also adopted safety tuning with data for each of these SEA countries, which helps to address many culturally and legally sensitive topics more appropriately - such tuning data tend to be ignored, or may even appear in conflict with the safety-tuning data of other mainstream models. Therefore, we believe that our models are more local-friendly and abide by local rules to a higher degree. We conduct SFT with a relatively balanced mix of SFT data from different categories. We make use of the system prompt during training, as we found it helps induce a prior which conditions the model to a behavioral distribution that focuses on safety and usefulness.   Through rigorous pre-training enhancements and culturally tailored fine-tuning processes,SeaLLMs have demonstrated exceptional proficiency in language understanding and generation tasks, challenging the performance of dominant commercial players in SEA languages, especially non-Latin ones. The models’ attunement to local norms and legal stipulations—validated by human evaluations—establishes SeaLLMs as not only a technical breakthrough but a socially responsive innovation, poised to democratize access to high-quality AI language tools across linguistically diverse regions. This work lays a foundation for further research into language models that respect and uphold the rich tapestry of human languages and cultures, ultimately driving the AI community towards a more inclusive future. One of the most reliable ways to compare chatbot models is peer comparison. With the help ofnative speakers, we built an instruction test set, called Sea-bench that focuses on various aspects expected in a user-facing chatbot, namely: (1) task-solving (e.g. translation & comprehension), (2)math-reasoning (e.g., math and logical reasoning questions), (3) general-instruction (e.g.,instructions in general domains), (4) natural-questions (e.g., questions about local context often written informally), and (5) safety- related questions. The test set also covers all languages that we are concerned with. AI model candidates' responses to the test set's instructions may be judged and compared by human evaluators or more powerful large and commercialized AI models to derive a reliable performance metric. Through this process, we demonstrate that our SeaLLM-13b model is able to perform on-par or supasses other open-source or private state-of-the-art models across many linguistic and writing tasks. Infocomm, Artificial Intelligence
Carbon Dioxide Removing Additive for Textiles
As rapid global warming accelerates, the need for increased sustainability efforts has become a critical societal challenge. While individual lifestyle changes can contribute, their impact remains limited without broader systemic shifts. This places significant pressure on industries, particularly the fashion & textiles sector, a major contributor to climate change responsible for 10% of global greenhouse gas emissions. Decarbonising this industry is therefore crucial to achieving a sustainable future. This technology enables textiles and fabrics to remove carbon dioxide (CO2) from air. The patent-pending material functionalises textiles to capture CO2 present in air which is sequestered into a harmless mineral during the laundering process. The resultant mineral which is environmentally safe is then washed away, leaving the textile recharged to remove CO2 once more. With this technology, decarbonisation of the textiles industry can be achieved through the decentralised action of consumers utlising functionalised carbon removing products. The technology owner is interested in working with interested companies in the fashion industry value chain to test-bed this new material for carbon removing apparel and fabrics. The technology is formulated and provided in a liquid formulation, to be a drop-in process where it is embedded in textiles during the “finishing stage” (last step) of a textile mill. Some features of the carbon removing technology include: Continual recharging of functionalised textiles through normal laundering process Forms a stable and environmentally friendly mineral upon sequestration of CO2 by regular detergent Lasts at least 10 washing cycles Can be embedded with standard finishing equipment (particularly at the padding and stenting steps) Currently optimised for cellulose based textiles but proof of concept has demonstrated polyester, polyamide, wool and blends thereof This technology has been designed for textiles – both for apparel and functional fabrics. It can also be considered for non-woven materials as well as for other applications such as coatings. Facing immense pressure to reduce its environmental impact, the fashion and textiles industry, a major contributor to global warming, seeks sustainable solutions that don't disrupt its fast-paced production. With an addressable global market of US$227 billion for textiles, this innovative technology offers a solution to textile manufacturers to reduce the industry’s carbon footprint. This empowers consumers to become active participants in combating climate change, simply by choosing clothes made with this technology. Offers a proprietary, environmentally safe carbon removal solution for textile industry Continual usage of the functionalised textiles – textiles are rechargagle to remove CO2 multiple times Does not require the adoption of new machinery or processes for its implementation carbon dioxide removal, textile, additive, carbon removal, fabric, decarbonisation, fashion, clothing, materials, mineral, functionalisation, sustainable, sustainability, apparel Materials, Nano Materials, Chemicals, Inorganic, Additives, Sustainability, Low Carbon Economy
Water-based Barrier Coatings for Paper Packaging
Paper packaging is a versatile material used for a wide range of products. Its widespread adoption is due to its renewable and relatively low-cost resource along with environmental benefits such as recyclability and biodegradability. While paper packaging offers several advantages, some drawbacks of the material include porosity and the lack of barrier properties against moisture, oil, and grease. To overcome these limitations, conventional coatings such as polyethylene (PE) or polyfluoroalkyl substances (PFAS) have been employed to impart the required barrier protection. However, during the paper recycling process, it is difficult to repulp the coated paper due to several factors and results in reduced recyclability of such packaging materials. The technology on offer is a water-based coating formulation that can be applied onto paper packaging surfaces to act as a barrier against grease, liquid water, and water vapour. The coating imparts barrier protection functionalities, improving the paper’s resistance to grease, liquid water, and water vapor significantly. Use of bio-sourced constituents in the coating also improves product sustainability. As the coating’s constituents are repulpable, recyclability of the paper packaging can be achieved. With increasing awareness of reducing packaging waste, the deployment of this technology will offer companies a recyclable paper packaging with notable barrier properties. The technology owner is seeking for R&D co-development, test bedding and IP out licensing opportunities of this technology with interested companies. The water-based barrier coating technology has the following features: Consists of bio-sourced constituents to improve product sustainability Enables repulping of coated paper, largely improving recyclability of such packaging materials Improved barrier to water vapour transmission (WVTR) - WVTR value as low as 100 g/m2.day (based on ASTM E96) Improved liquid water resistance - Cobb60 value as low as 10 g/m2 (based on TAPPI T441) Improved grease resistance - a KIT rating as high as 12 (based on TAPPI T559) Easily applied by standard coating equipment Potential applications include (but are not limited to): Paper-based food packaging Paper boards, bags, and shipping sacks Products requiring enhanced barrier paper packaging Improves paper-based product recyclability while improving barrier properties of the paper Utilisation of bio-sourced constituents in coating formulation increases product sustainability Offers an alternative to PE and PFAS coated paper that are difficult to repulp coating, barrier, packaging, paper, water-based, recycling, recyclable, pulp, sustainability, sustainable, circular economy Chemicals, Coatings & Paints, Foods, Packaging & Storage, Organic, Bio-based, Sustainability, Circular Economy
Reconfigurable Workspace Soft Gripper
The Reconfigurable Workspace Soft Gripper (RWSG) is a bio-inspired, pneumatically actuated, shape morphing soft robotic gripper that is capable of rapid reconfigurability. It features passive retractable nails, bi-directional foldable petals, and a flexible palm to adapt to various grasping and manipulation tasks and requirements. The ability to rapidly reconfigure allows the RWSG to grasp a wide range of large, thin, hard, delicate, and deformable objects. These capabilities make the RWSG a uniquely advantageous tool for high mix low volume manipulation and packing scenarios such as food assembly, packaging of groceries, and packing of consumer electronics. The RWSG features retractable nails to help in precision grasping of small, thin, and high aspect ratio objects. An optimized bidirectional finger flap design allows its fingers to morph into scoop-like shapes to easily manipulate granular and semi liquid items such as grains, jelly, stews, curries or scrambled eggs. A multi-material palm design helps regulate the RWSG’s aperture to adapt for large or wide objects. The RWSG utilizes low, safe pressures (-80kPa to 60kPa) to switch between and operate the various grasping modes. High mix low volume manipulation tasks for consumer goods, logistics, and food industries can benefit from advanced robotics to meet evolving demands in productivity, safety, and sustainability. These sectors often require manipulation and grasping capabilities that cannot be achieved by conventional robotics using rigid grippers or end-effectors. The RWSG can provide reliable and safe robotic handling of a wider range of objects in these challenging scenarios using its adaptive capabilities. With the ability of handling a wider range of objects, RWSG automation setups can help reduce changeover times (less or no tool changes required), improve safety (humans are not required any longer for manipulation in hazardous environments), and even contribute towards sustainability (less overall resources required). The RWSG has a unique structure that allows robust and safe grasping of a wide range of large, thin, hard, delicate, granular, and deformable objects. Its structure is composed of food safe, hypoallergenic silicones that can tolerate both high and low temperatures. These unique features far surpass the capabilities of traditional rigid grippers and end-effectors. The RWSG can be seamlessly integrated with all major cooperative manipulators currently available in the market. Soft Robotics, End Effector, Robotics, 3D Printing Electronics, Actuators, Infocomm, Robotics & Automation