innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Cricket-Based Asian-Style Crackers
The world faces a mounting challenge in feeding a growing population projected to reach 9.7 billion by 2050 (United Nations). This increase drives demand for high-quality protein, but traditional sources like livestock, poultry, and fish are resource-intensive (e.g., water, land, feed), environmentally harmful (GHG emissions, deforestation) and increasingly unsustainable. With high efficiency, low emissions, and strong nutritional value, insect protein offers a sustainable alternative to conventional meat sources—especially relevant in urbanized, climate-conscious societies seeking innovation in food systems like Singapore. Crickets possess subtle flavours reminiscent of crustaceans, making them an excellent addition to our fried crackers. This familiar taste profile is particularly advantageous in Southeast Asia, where prawn crackers (Keropok) are a beloved snack. By leveraging this familiarity, this technology hopes to achieve greater consumer acceptance and rapid market adoption. These versatile crackers can be savoured as a delightful snack or paired with traditional dishes such as Nasi Lemak. Whether enjoyed as a standalone treat or as an accompaniment to a meal, these cricket-infused fried crackers offer a unique and flavourful experience that bridges the gap between innovative food trends and cultural culinary traditions. The method of processing leverages the equipment available and suitable for all standard commercial kitchens e.g. steams, dehydrators, mixers and fryers, thus allowing for lower set-up costs and being scalable to large production quantities. In addition, the recipe does not use any specialised ingredients such as modified starches, additives, preservatives. Starches used are mostly native which means the cost generally be lower and easier to source for. This makes for a relatively clean-label product. The production steps are shown below: Mixing of ingredients Precooking and drying of mixture The dried pieces are deep-fried in hot oil until crispy and golden brown This product is intended to be a high protein snack, with protein content estimated to be around 12%. It also does not contain trans fats. Sodium content can be adjusted with formulation. This makes it a healthier alternative to conventional snacks like potato chips. The shelf life of this product is estimated to be at least 6 months in proper packaging under ambient and higher if nitrogen flushed. This Cricket Keropok serves as a versatile base snack that can be customized with various ingredients, seasonings, and flavours to cater to different taste preferences and market demands. Flavour Variations with Seasonings & Spices (e.g. Mala / Seaweed) Dipping & Pairing Options (e.g. Served as a dipping snack with sauces like sambal, garlic aioli, or yoghurt-based dips) Functional & Health-Oriented Applications (e.g. High-Protein Snack – Marketed as a nutritious, protein-rich alternative to regular crackers) Innovative Culinary Uses (e.g. Crushed as a topping for salads or soups) Scalable with common kitchen equipment Clean label and free of additives Healthier choice snack Sustainable & eco-friendly protein source Customisable & versatile to cater to diverse consumer preferences Alternative Protein Source, High Protein Snack, Food Sustainability, Circular Economy, Eco-Conscious Eating, Sustainable Living Foods, Ingredients, Sustainability, Circular Economy
Envisioning a Safer and a More Productive World with Video Analytics
Monitoring safety and productivity on industrial sites is traditionally manual, error-prone, and resource-intensive. Supervisors often struggle to monitor multiple CCTV feeds, leading to missed incidents and project delays. This technology leverages AI-powered video analytics to automate the detection of safety violations—such as missing PPE, high-risk behavior, and productivity lapses—without the need for constant human oversight. In Singapore alone, over 3,000 construction-related injuries and 17 fatalities were reported in 2023, underscoring the need for smarter solutions. Beyond real-time alerts, the system delivers actionable insights to support long-term safety improvements and operational efficiency. The technology owner is seeking system integrators and software companies for R&D collaboration and test-bedding. This technology is hardware agnostic and is compatible with any IP camera or network video recorder to retrieve and analyze the video feed in real-time and provide alerts that can be sent to various messaging platforms. A server is deployed to provide the full spectrum of services such as running the software, triggering alerts, as well as the dashboard. This technology is enabled by the large construction datasets that powers object detection and tracking. The current range of detection includes scenarios such as barricade removal, workers working at height or under lifted load, safe distancing, and presence of workers in high-risk zones, PPE and more. Besides the detection of high-risk scenarios, this technology can also track productivity insights such as construction floor progress or precast lifting times. Deployment for existing use-cases can typically be completed within 1 to 3 weeks, allowing for quick integration and value realization. For newer or customized applications, the deployment timeline may vary depending on the complexity of the detection requirements and site-specific conditions. This technology can be applied across multiple industries, offering both safety monitoring and advanced analytics capabilities Construction Detection of missing PPE, unsafe behavior, and high-risk activities Time-lapse services for project progress tracking and reporting Manufacturing Monitoring worker compliance and detecting workflow bottlenecks Enhancing factory floor safety with real-time alerts Maritime & Port Operations Safety surveillance in dockyards and cargo handling zones Monitoring restricted area breaches and operational hazards Oil & Gas Detecting proximity to hazardous zones and PPE compliance Supporting incident analysis in high-risk environments Smart Cities & Facility Management License plate recognition for access control Detection of illegal parking, speeding, and vehicle trespass Medium to large construction projects are often delayed and experience cost overruns, which can be significantly improved through significant productivity gains, cost savings and early risk identification just by enabling end users to have a better understanding of their operations wherever they are which would make this a very attractive solution. Significantly improve safety hazard detection and compliance with automatic 24/7 monitoring Increase in productivity by reducing manual site inspections of up to 50% Early identification of risks to plan for mitigation Reduce human errors and ensure consistency   safety, AI, Analytics, construction Infocomm, Video/Image Analysis & Computer Vision, Big Data, Data Analytics, Data Mining & Data Visualisation, Artificial Intelligence
Non-Invasive Wearable for Stress Tracking via Pulse Shape Variability
This non-invasive wearable integrates advanced photoplethysmography (PPG) sensing with a proprietary Pulse Shape Variability (PSV) algorithm to deliver real-time insights into stress levels linked to blood pressure fluctuations. Unlike conventional wearables that rely solely on heart rate or HRV, this technology analyzes the full morphology of the pulse waveform, capturing dynamic changes in amplitude, rise time, and contour that reflect vascular tone modulation caused by psychological stress. The result is a highly responsive and motion-tolerant stress detection platform that functions effectively in real-world conditions. By transforming microvascular signals into actionable insights, the solution enables proactive stress awareness, personalized wellness coaching, and context-aware emotional feedback, unlocking new opportunities in digital health, telemedicine, fitness, and mental wellness ecosystems. The technology owner is primarily seeking industry adopters and solution partners including medical institutions, device manufacturers, software developers, and fitness centers, who can integrate the technology into real-world applications with interest in deploying the system for use cases such as mental wellness, stress monitoring, fitness optimization, and remote healthcare. They also welcome collaboration with subject-matter experts to jointly enhance the algorithm and explore new features or application areas. This wrist-worn wearable captures and processes high-resolution biometric signals using integrated optical and motion sensors, enabling detailed physiological monitoring through advanced signal analysis. Signal Acquisition: Photoplethysmography (PPG) and Accelerometer (ACC) signals Derived Metrics: Heart Rate (HR) Blood Oxygen Saturation (SpO₂) Pulse Shape Variability (PSV) – derived from pulse waveform morphology to assess stress-related vascular responses Sleep Parameters: REM and NREM sleep stages Total Sleep Time (TST) Apnea-Hypopnea Index (AHI)  Activity Data: Step count and movement recognition System Capabilities: Real-Time Stress Detection: Continuous analysis of physiological stress signals with no need for user calibration Operates effectively during both rest and typical daily movement Motion-Tolerant Signal Processing: Proprietary algorithms reduce noise from physical activity, enabling reliable readings in dynamic conditions This wearable stress and health monitoring technology has broad applications across healthcare, wellness, fitness, and cognitive performance domains. Its ability to deliver continuous, non-invasive physiological insights makes it suitable for a wide range of use cases: Healthcare & Telehealth: Continuous patient monitoring, early detection of stress-linked health risks, and remote management of chronic conditions, particularly for mental health, cardiovascular, and sleep-related concerns. Medical Concierge & Premium Wellness Services: Personalized health monitoring for high-net-worth individuals, offering tailored stress and wellness insights, real-time biometric updates, and proactive intervention strategies. Mental Wellness & Stress Counselling: Real-time monitoring of stress indicators to support therapists, coaches, or counselors in delivering timely, personalized stress management interventions. Fitness & Recovery Optimization: Accurate tracking of heart rate and stress levels during and post workouts, enabling intelligent recommendations for training intensity, rest periods, and recovery quality. Workplace Well-being & Performance: Monitor cognitive load and emotional strain in high-performance environments, enabling preventive strategies for burnout and stress-related fatigue. Smart Devices & Platform Integration: Embedding into smartwatches, fitness trackers, or medical-grade wearables, with seamless connectivity to digital health apps, dashboards, and remote care platforms. This wrist-worn device offers a significant advancement over current health monitoring solutions by leveraging advanced photoplethysmography (PPG) technology combined with a proprietary Pulse Shape Variability (PSV) algorithm. It delivers highly accurate and continuous tracking of vital signs, including heart rate, SpO₂, and stress-related biomarkers—with minimal interference from physical movement, making it ideal for real-world, everyday use. Unlike conventional wearables that rely on basic HR or HRV metrics, this solution analyzes the full morphology of the pulse waveform to detect subtle changes in vascular tone associated with psychological stress. This allows users to correlate emotional states with verbal expressions and behavior, enabling more mindful, data-driven self-awareness and health management. The device’s motion-tolerant design, real-time data transmission, and non-invasive operation ensure consistent performance even during physical activity. Its seamless integration with health platforms and apps further enhances usability, positioning it as a versatile tool for individuals, clinicians, and wellness providers. Ultimately, this technology empowers users to make informed decisions about their stress levels, recovery, and overall well-being—bridging the gap between biometric sensing and emotional health insight in a user-friendly wearable format. Photoplethysmography, PPG, Pulse Shape Variability, PSV, Stress Detection, Wearable, Wellness, Non-Invasive Monitoring Healthcare, Diagnostics, Infocomm, Wearable Technology
Multi-Functional Autonomous Facility Management Robot
The adoption of multi-functional autonomous robots is steadily increasing to support and enhance operational efficiency in the facilities management sector. This technology presents a robot integrated with advanced sensor systems, artificial intelligence (AI), and autonomous mobility to perform multiple tasks. As a digital concierge, the robot provides enhanced visitor experience with seamless 2-way communication and an integrated touchscreen to connect with site duty personnel. The same screen can double up as an announcement board for advertisements and alerts, thereby extending a virtual front-desk capability effectively. In the security domain, this robot conducts autonomous patrols with real-time video surveillance and A.I.-based anomaly detection. The security head is embedded with a "brain” to perform on-edge computing to detect security-related used cases, significantly improving safety and accuracy in complex indoor environments. For cleaning, the robot can detect over 30 types of waste with 99% accuracy. Its self-adaptive cleaning system adjusts to floor type and debris volume, while a verification mechanism ensures more effective spot-cleaning compared to conventional single-pass robots.  These Multi-Functional Autonomous Facility Management Robot can yield significant operational savings, increase patrol frequency and shorten response time to incidents. This technology offers a software that features plug-and-play solutions that be customised to specific SOPs and needs. The technology owner is looking for collaborators, such as building owners and integrated facility management companies, with use cases to test-bed AI models. Examples include but not limited to identification of suspicious baggage, illegal parking or stray supermarket trolleys.  The robot combines autonomous navigation with real-time AI processing. Its modular design allows for easy customisation based on operational needs. Key components include: Sensor suite featuring 32-beam 3D LiDAR, ultrasonic sensors & cameras for obstacle detection or environmental mapping AI-powered modules for object/person detection, thermal imaging, and anomaly alert Cloud-based dashboard for task assignment, remote monitoring, and analytics Interchangeable task modules for cleaning (e.g., vacuum/sweeper), security patrolling, and data capture Detect over 30 types of waste with 99% accuracy, with cleaning efficiency reaches up to 15,550 m²/hr Customisable module to fit specific applications This multi-functional robotic platform is ideally suited for deployment in environments that require a combination of cleanliness, security, and user interaction, particularly where operational efficiency and manpower optimization are key priorities. Industries and settings include: Commercial buildings: Automates cleaning, performs security patrols during and after hours, and assists visitors Healthcare facilities: Maintains hygiene, monitors for safety risks, and provides non-contact concierge functions Transportation hubs (airports, train stations): Enhances public safety and facility cleanliness at scale Retail complexes and malls: Supports shopper engagement, provides sanitation services, and detects anomalies Educational institutions and campuses: Ensures safe, clean, and welcoming environments Hospitality and mixed-use developments: Offers 24/7 concierge support, patrolling, and environment upkeep The global service robotics market is projected to grow by a CAGR of 30.25%, or $90.4 billion, from 2024 to 2028. This rapid growth will be driven by the continuing integration of advanced technologies such as IoT, A.I., and natural language processing into service robots. Technological advancements in machine learning, adaptive computing, and vision systems will also make service robots increasingly suitable for commercial tasks.  This autonomous multi-functional robot offers a comprehensive upgrade over current facility management solutions by integrating various functions in domains such as cleaning, security, and concierge into a single, intelligent body. This all-in-one solution delivers: Operational cost reduction through task consolidation across different functions, potentially cut cleaning and security manpower cost by 60-70% Faster response from sensing to action with integrated digital concierge, dashboard monitoring and real-time alerts Enhanced safety via advanced 3D spatial awareness Improved service quality without added manpower By unifying execution and intelligence across multiple domains, the robot transforms traditional building operations into efficient, autonomous workflows, bridging the gap between insight and action, delivering a more responsive, self-sufficient, and cost-effective solution for modern facility operations. Autonomous robotics, Integrated facility operations, cleaning automation, security surveillance, AI, robots, multi-function Green Building, Sensor, Network, Building Control & Optimisation, Infocomm, Robotics & Automation, Ambient Intelligence & Context-Aware Computing, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Autonomous Built Environment Inspection
Manual built environment inspection suffers from multiple issues such as shortage of manpower, human error and miscommunication. To overcome these issues, there is a need for an automated and centralized inspection system capable of detecting multiple defects of interest and presenting the inspection results in an easy to access format. The technology presented uses data acquired from LiDAR and Cameras mounted on an autonomous robot to inspect building interiors and external facades. The system utilizes an AI engine and can accurately detect defects such as cracks, holes, and other built imperfections stated in building quality guidelines such as CONQUAS. Defect reports can be autonomously generated after the acquired image and LiDAR data has been processed by the AI analytics engine.  The system is composed of an autonomous robot with a mounted camera and LiDAR and has the following features - Support for multiple hardware platforms such as wheeled robots and drones to allow the use of most suitable means of inspection. AI based defect detection for cracks, holes, stains, cornerness, and other structural and visual defects at >3mm unevenness. Capability to inspect for air quality, hazard detection and safety monitoring (PPE Detection). Simple and intuitive user interface with customizable repots minimizing possibility of miscommunication. Generation of defect reports compliant to Singapore Building and Construction Authority recommendations for Built Environment - CONQUAS. Defect and user management system. Capability to integrate with external Building Information Management (BIM) systems and third party apps. The system can be used for digitalization and autonomous inspection of built environments. It covers both the indoor and outdoor inspection by allowing use of multiple robot platforms. With the removal of manual inspection requirements, the system helps improve the consistency and objectiveness of inspections and helps in increasing productivity. The technology is applicaple for tasks related to management of a building from construction to maintenance. By automating and centralizing the built environment inspection, the system improves productivity, significantly reduces the time required by the inspection process, and improves the safetly of the personnel involved. The solution is useful during the entire lifecycle from construction to maintainence and provides automated reports compliant to recommendations of the Singapore Building and Construction Authority. The solution can potentially cut down the time required for inspection by several hours per residential or commercial unit. Building Indoor and Facade Inspection, Built Environment Inspection, CONQUAS, CIS-7, Quality Assessment Electronics, Sensors & Instrumentation, Infocomm, Video/Image Analysis & Computer Vision, Artificial Intelligence
Accelerating Vision-based Artificial Intelligence Development with Pre-trained Models
Vision-based Artificial Intelligence (AI) models require substantial time to train, fine-tune and deploy in production. After production, this process is still required when performance degrades and re-training on a new dataset becomes necessary; this maintenance process exists throughout the model's lifetime to ensure optimal performance. Rather than embarking on the time-consuming and painful process of collecting/acquiring data to train and tune the AI model, many organisations have turned to the use of pre-trained models to accelerate the AI model development process. This technology consists of a suite of pre-trained models that are intended to detect food, human behaviours, facial features and count people. These AI models are operable on video footage and static images obtained from cameras. Models are tuned and trained on various use-cases and are accessible via API calls or embedded within software as a Software Development Kit (SDK) library. These models can be deployed as AI as a Service on Microservices platform providing customer data protection with blockchain technology. With customer protection enhanced with blockchain technology, AI Model performance can further be enhanced to meet customer requirement.   The technology consists of a suite of pre-trained AI models that provide high accuracy (over 80%) and can be further customised to improve accuracy and adapted to different use-case scenarios. Models can be integrated in the following ways:  Installed library package embedded within software on-device/on-premise HTTP-based Application Programming Interface (API) calls with video/image data to cloud-installed library package The following are the features for various AI models: Abnormal Behaviour Recognition Continuous monitoring and detection of abnormal human behaviours e.g. fighting, loitering Event Detection Recognises a variety of subjects and events e.g. sports day, graduation, wedding, festival, Christmas, from video footage Optimised for lightweight compute capability (Intel OpenVino) Food (Fresh and Packaged) Recognition Real-time detection of fresh and packaged foods Detects abnormal fresh food or defective packaged food Classifies food types e.g. lotus, spinach, cucumber, radish etc. Optimised for low compute capability Privacy-Preserving Person Recognition Privacy preserved people detection, counting and human activity recognition Images are blurred to preserve private information that can lead to personal identification (irreversible) Optimised for lightweight edge computing Free (Empty) Space Recognition Semantic segmentation to identify empty spaces Customisable for any free-space detection scenario High accuracy in night scenes Safety Monitoring Object detection with prohibited and allowed zones (e.g. person or forklift) Detects and identifies safety risks associated with safety distances Enables audible alarm systems of abnormal situations Wellbeing and Safety Detection Automatically detects and classifies nudity images from images  Enables alerts to be delivered to parent/caregiver's device Customisable to detect new categories of inappropriate content This technology offer comprises a suite of AI models for the following applications: Abnormal Behaviour Recognition Public areas or areas where social order needs to be maintained e.g. food & beverage, entertainment establishments Event Detection Automatic creation and/or organisation of media content i.e. photo classification Automated adjustment of device hardware parameters e.g. audio, colour, brightness when displaying specific types of content e.g. sports Food (Fresh and Packaged) Recognition Food stock level detection, food inventory management Automatic detection of fresh/packaged goods within a constrained area Privacy-Preserving Person Recognition Privacy protection of visual information, in high traffic areas, without deterioration of video quality Free (Empty) Space Recognition Vehicle position localisation on roads Navigation (free-space localisation) in partial/fully self-driving automotive vehicles Identification of free storage spaces in the logistics industry Safety Monitoring Automated compliance checks Workplace safety analysis and tracking Wellbeing and Safety Detection  Parental control in browsers, smartphones or other image storage devices e.g. Network Attached Storage (NAS), Solid State Drives (SSD) AI Models were rigorously tested in the fields of different scenarios. The microservice platform where AI Model ingest the visual data streams offers a secure customer data protection and privacy using blockchain technology. Making this Microservice platform capable of tracking customer’s data usage and thus ensure privacy when AI model operating on the platform are simultaneously improved using unique customer data captured on customer’s premise. Accelerate AI development - eliminate the need for dataset creation, annotation, tuning and testing Customisable AI models - fine-tuned to environment and condition Operational support to continuously improve AI accuracy from newly collected data   event detection, abnormal human behaviour recognition, safety monitoring, food package detection, food freshness, nudity detection, empty space Infocomm, Video/Image Analysis & Computer Vision, Video/Image Processing, Artificial Intelligence
Resilient Data Encryption Against Quantum Cybersecurity Attacks
The Internet has become the de-facto medium for many enterprises to carry out their business functions. By relying on public-key encryption to ensure confidentiality and authenticity of data, employees and customers are able to use a variety of public channels via web browsers, emails and mobile apps to send and receive sensitive information securely. However, this promise of confidentiality and authenticity is being compromised with the advent of quantum computers. With the potential rise of exponentially powerful quantum computing, current data encryption algorithms are not resilient enough for such hidden quantum cyberattacks, specifically harvest-now decrypt-later (HNDL) attacks, resulting in data leaks and undermining privacy. The technology owner has leveraged on their proprietary post-quantum cryptography (PQC) implementation to develop a software module to provide and enhance existing end-to-end data encryption, ensuring resilience to quantum cyberattacks while maintaining confidentiality and authenticity of data. By utilising Key Encapsulation Mechanism (KEM) and JavaScript, it is compliant with evolving cybersecurity standards while being lightweight and dynamic enough to be loaded and executed without installation or configuration. This enables the technology solution to be flexible, scalable and user-friendly. The technology owner is currently working with an organisation to further develop industrial applicable solutions. The technology owner is seeking collaboration partners, such as system integrators, independent software vendors, solution providers and end-users, who require an enhanced and compliant data encryption for the finance, government and healthcare industries. The technology solution, in a form of a software module, leverages on their proprietary PQC cryptographic implementation to secure confidentiality and authenticity of data. Some specifications of the module include: Compliance to National Institute of Standards and Technology (NIST) PQC encryption method Utilises combination of ML-KEM-768 (FIPS 203) and AES FIPS 197 algorithms for secure key establishment Client-side JavaScript library with possible enterprise integration with hardware security modules (KSM), e.g. OTP device No installation or configuration required Optimised to run dynamically on devices and platforms With the above specifications, this quantum-resistant software solution has the following features: Supports and enhances existing end-to-end data encryption to be quantum resilient User friendly with processes being executed at backend. Does not require technical expertise to deploy, use and maintain Flexibility in integration to new or existing infrastructures Lightweight and scalable for fast and rapid deployment With the potential rise of quantum cyberattacks, especially HNDL attacks, private information and data can potentially be vulnerable and compromised. Hence, any application transmitting sensitive data via web browser or mobile applications requiring heightened cybersecurity will greatly benefit from it. Examples of such applications include, but not limited to: Digital interaction and conversations with customers Customer portal for transaction and filing purposes Secure file transfer and email to via internet or intranet Digital entry requiring sensitive information Online transaction requiring private information The software module protects against quantum threats, such as HNDL attacks, by leveraging on their proprietary PQC encryption implementation, ensuring secure end-to-end encryption of data between web browser and organisation. Utilising a hybrid combination of ML-KEM-768 and AES FIPS 197 algorithms, it provides compliance to NIST standards to be quantum resilient. With the solution deployed on JavaScript, it is dynamic and integrates seamlessly with existing infrastructure backend, maintaining existing end-user experience. The software is efficient and resource light while being scalable. With the adoption of such technology solution, it enables organisation to pre-emptively fortify their digital security for an incoming post-quantum world. Post-Quantum Cryptography (PQC), Quantum Cyberattacks, Cyberattacks, Cryptographic Encryption, Web Page Security, Harvest-Now Decrypt-Later (HNDL), Key Encapsulation Mechanism (KEM), JavaScript Infocomm, Security & Privacy
Digital Screening for Mild Cognitive Impairment and Vascular Cognitive Impairment
Early detection of Mild Cognitive Impairment (MCI), especially the vascular subtype, is becoming increasingly important as populations age and the burden of dementia rises globally. Approximately 12% to 18% of people age 60 or older are living with MCI, and an estimated 10% to 15% of individuals living with MCI develop dementia each year — many of which could benefit from timely intervention to slow or prevent further cognitive decline. This digital solution offers a non-invasive, self-administered cognitive screening tool that can be completed in just 15 minutes via a mobile device or tablet. It uses a series of interactive, neuroscience-informed digital tasks to assess multiple cognitive functions, including working memory, attention, processing speed, and executive function. These areas are particularly relevant in identifying different subtypes of MCI, such as those related to vascular causes. The system’s proprietary algorithm analyzes the user’s performance and has been clinically validated in Southeast Asia, achieving 89% accuracy with strong specificity and sensitivity. Its objective, performance-based design makes it suitable for deployment across various healthcare settings—from hospitals and clinics to insurers and community screening programs. By offering a quick, engaging, and scalable method for cognitive screening, this solution supports earlier identification of cognitive changes and provides actionable insights that can help guide appropriate follow-up care based on the individual’s cognitive profile. At the heart of the solution is a suite of neuroscience-backed digital games, purpose-built to evaluate key cognitive domains—working memory, attention, processing speed, and executive function. These interactive tasks generate performance data processed by a proprietary classification algorithm. Clinically validated in Southeast Asia through a study involving 250 participants, the tool demonstrated a classification accuracy of 89%, with specificity and sensitivity rates of 83% and 85% respectively. This solution can be widely adopted across various healthcare ecosystems, including: Hospitals GP clinics  Healthcare insurance providers Wellness centres  It also opens up opportunities for commercial products such as corporate cognitive wellness programs and dementia-specific insurance plans, enhancing value propositions for insurers and health-focused employers alike. Current MCI detection methods typically rely on MRIs and detailed neuropsychological testing—both of which require trained personnel, extended patient interaction, and significant costs. In contrast, this digital tool provides: A self-administered test No need for specialist oversight Completion in under 15 minutes An engaging, gamified interface The result is a highly scalable and accessible cognitive screening method that maintains clinical rigour while ensuring ease of use and user engagement—crucial for widespread adoption in diverse populations. Dementia, Mild Cognitive Impairment, Cognitive Health Healthcare, Diagnostics, Telehealth, Medical Software & Imaging
Localised, Multi-Lingual, and Effective Voice AI Agents for Seamless, Human-Like Interactions
In a world where consumers expect fast, intuitive, and personalised interactions, traditional phone-based customer service systems often fall short—plagued by long wait times, clunky menus, and impersonal scripts. This Generative Voice AI technology offers a transformative alternative: highly localised, low-latency AI Voice Agents that communicate with human-like fluency, adapted to regional languages and accents including Singlish, Mandarin, Bahasa, and Malay. Built on a proprietary orchestration layer that integrates multiple advanced AI models—such as speech recognition, large language models, and natural speech synthesis—this solution delivers seamless, real-time voice interactions with remarkable accuracy and responsiveness. Not only can Voice AI Agents reduce call wait times to zero and improve customer satisfaction for companies, it can also do outbound sales and lead qualification to generate higher revenue. Beyond traditional roles, these Voice AI Agents are also redefining interactive experiences across industries. Imagine a multilingual guide replacing static audio tours in museums and travel hotspots, or a virtual assistant enhancing patient navigation in healthcare settings. In gaming, they enable real-time, unscripted conversations with non-player characters (NPCs), adding depth and realism to gameplay and storytelling. These are not just voice interfaces—they're intelligent conversational agents. The tech owner seeks industry partners and system integrators to embed their proprietary technology into pre-existing software to add value and transform customer experience in sectors such as F&B, Healthcare, Marketing, Tourism, E-Commerce, Hospitality, Insurance, Financial Services, Gaming etc. Cascading ASR System: Integrates speech-to-text, LLMs, text-to-speech, and contextual models to simulate intelligent, fluent conversation. Telephony-Optimised: Ensures high call quality and response accuracy over phone lines. Proven Outcomes: Over 60% cost savings over human agents. Average 30% improvement in customer satisfaction. 10x increase in lead qualification and revenue-driving interactions. Customer Support & Sales Across industries such as financial services, insurance, e-commerce, education, BPOs, marketing, and hospitality, the AI Voice Agent automates high-volume interactions with natural, real-time conversations. It handles inbound support, outbound lead qualification, appointment setting, policy inquiries, and product recommendations—reducing manpower cost while improving satisfaction and conversion rates. Interactivity Enhancement The technology also opens up opportunities beyond conventional customer service, enhancing user engagement in more immersive and context-specific environments: Healthcare: Acts as a multilingual virtual assistant for patients—offering appointment reminders, explaining medical procedures in simple terms, guiding post-treatment care, and supporting chronic condition management. In clinical settings, it can function as a digital triage or nurse assistant, freeing up staff for higher-value tasks. Hospitality: Powers smart concierge agents capable of handling guest queries, local recommendations, service requests, and upselling—available 24/7 in the guest’s preferred language. Tourism: Replaces static audio tours with dynamic, conversational voice guides that adapt to visitor interests, languages, and local context. Education: Supports learning through AI-driven teaching assistants that respond to student queries, reinforce concepts, and provide explanations tailored to individual learning styles. Gaming: Enables interactive, unscripted voice conversations with non-player characters (NPCs), making game environments more immersive, responsive, and emotionally resonant. Where many voice bot platforms require deep technical know-how and still deliver robotic-sounding results, this Voice AI Agent flips the script. Its proprietary orchestration layer brings together the best of today’s AI ecosystem—streamlining complexity to deliver a natural-sounding, adaptive voice that feels like a real person on the other end. Unlike process-driven bots, this solution handles unstructured queries with intelligence, personality, and local linguistic flair—whether in Singlish, Mandarin, Bahasa, or beyond. It’s optimised for real-world usage, delivering results not just in ideal lab conditions, but on live phone calls with diverse users. Voice AI, Generative AI, Customer Service, Localised Language, Singlish Infocomm, Artificial Intelligence, Speech/Audio Analysis & Speech Recognition