innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Our focus also extends to emerging technologies in Singapore and beyond, where we actively seek out new technology offerings that can drive innovation and accelerate business growth.

By harnessing the power of these emerging technologies and embracing new technology advancements, businesses can stay at the forefront of their fields. Explore our technology offers and collaborate with partners of complementary technological capabilities for co-innovation opportunities. Reach out to IPI Singapore to transform your business with the latest technological advancements.

Photonic Technologies For Real-Time Hydroponic Crop Health And Nutrient Supply Monitoring
Indoor vertical farming is pivotal for addressing future food challenges, particularly in arable land-scarce countries. One common method is hydroponics, which uses mineral and nutrient solutions in a water-based platform to grow crops. To optimize the crop yield and to reduce the man work hours required, it is important to automate crop health monitoring and replenishing of specific nutrients. Currently, these tasks are labour-intensive and subjective. While some imaging techniques exist for detecting plant stress and chlorophyll monitoring, a complete system covering all aspects is still lacking. For nutrient analysis, tools like pH and electroconductivity meters can only detect a change in the nutrient composition to start a feedback loop but are unable to determine the specific nutrient component or deficiency level. This technology is a comprehensive quantitative monitoring system integrating imaging spectroscopy and laser-based elemental spectroscopy to quickly identify the crop growth stages, alert crop stresses (tested on several lettuce species) and quantify specific nutrient levels in the nutrient supply. This allows for reduced man work hours and improvement of crop yield. Complete crop health monitoring through combined leaf, root, and nutrient supply monitoring, with automated replenishment Real-time in-situ component wise nutrient monitoring capability with high sensitivity (in ppb levels) enabling automated selective nutrient replenishing Non-invasive and non-contact, no sample preparation required Modular sub-systems allowing for easy integration with existing systems Machine learning capability for improved spectral library creation, enabling rapid and efficient monitoring   Applications validated at lab scale: Automated hydroponic crop monitoring in large indoor agricultural farms Inline, real-time nutrient monitoring of nutrient solutions Other applications tested at experimental POC scale and shown to be more rapid and accurate than existing methods: Real-time water quality monitoring Post-harvest quality determination of crops Trace elemental detection in body fluid   Offers full-spectrum monitrong for both crop health and nutrient supply, covering both leaf and root systems Enables automated, real-time nutrient replenishment with precise, component-wise monitoring at ppb sensitivity levels Features modular subsystems and easy integration with existing setups, supported by specific spectral libraries and machine learning for efficient monitoring and classification   Hydroponics, Nutrient Monitoring, Non-destructive Monitoring, Urban Farming, Indoor Farming, Spectroscopy, Imaging Life Sciences, Agriculture & Aquaculture, Foods, Quality & Safety, Environment, Clean Air & Water, Sensor, Network, Monitoring & Quality Control Systems
Smart Soft Robotic Gripper for Delicate, Heterogenous Objects
With the global trend of industrial automation, robotic arm technology is being developed and integrated to existing business workflow, increasing labour productivity and operational efficiency. However, current end effectors attached to robotic arm excels in automation tasks of handling homogeneous robust objects but fall short in handling irregular, fragile objects. Current robotic grippers (end effector) lack the finesse and limberness required, limiting their usage in particular areas such as agriculture, F&B, pharmaceutical and logistics. The technology solution developed is a smart soft robotic gripper as a modular end effector that addresses the challenge of handling objects with varying sizes, shapes, and weights, an issue unsolved by traditional robotic grippers. This innovative gripper tool mimics the flexibility and versatility of biological structures like tendrils, enabling an extra dimension of growth and twining capabilities. By wrapping itself securely around objects, the gripper manipulates items gently, minimizing the risk of crushing or damaging them. Its integrated sensors provide real-time contact feedback capabilities, enabling precise monitoring and adaptive control by the robotic system. The technology owner is seeking collaborative partners, such as system integrators or end-users, who are in need and keen to integrate a versatile, adaptive, and gentle handling solution that can operate efficiently in environments where object fragility or irregularity is a key concern. The smart soft robotic gripper module comprises of three key components: flexible fingers, actuation system and sensor integration. A novel concept is introduced for a flexible finger, utilizing a single tendon within a flexible body to perform three-dimensional bending and twisting motions. This design enhances the gripper’s adaptability, allowing it to handle objects with various shapes, sizes, and weights, with current payload exceeding 10kg. The integration of vision and haptic sensors further refines its capabilities to provide gentle and precise manipulation of delicate items. Additionally, the sensor integration supports potential applications in sensor fusion and IoT systems, expanding its utility across advanced automation environments like smart farms and smart factories. With its modular design, it enables customisation and scalability to integrate into existing robotic systems. Handling of Food (urban farming, food and beverages) The gripper solution can gently handle delicate crops like bunches of vegetables and irregularly shaped fruits, which can facilitate automated harvesting or processing with minimal damage. Its adaptability makes it potentially suitable for smart farms where precision and adaptability are essential. A pilot test for harvesting automation is currently being conducted in an urban farming application. Smart Factories (warehousing, manufacturing) The gripper solution is able to handle a variety of fragile and odd-shaped product, providing flexibility to environments of heterogenous items. The technology also enables safe handling of items, promoting industrial automation of delicate assemblies and improving assembly precision. Pharmaceuticals (medical device, procedures) The gripper tool can handle sensitive medical devices and products to minimise or prevent damaging during handling. The tool is able to provide additional assistance to medical personnel for more delicate medical procedures, reducing discomfort while increasing precision. The smart soft robotic gripper is bio-inspired and mimics natural organism, like octopus arms, to enhance navigation and interaction with their surroundings. This results in an extra dimension of flexibility and versatility to handle intrinsic nonlinearity of soft, delicate, heterogenous materials. The integrated sensors enable situational awareness capabilities, providing adaptability and enhancing precision. Lastly, the modular design provides customisability to specific use-cases, with the gripper being able to be scaled to suit the operational needs. Soft Gripper, Smart Gripper, End Effector, Soft Robotic Gripper Electronics, Actuators, Manufacturing, Assembly, Automation & Robotics, Foods, Processes
Software and AI To Digitize and Automate Seafood Manufacturing and Supply Chains
A smart manufacturing and supply chain platform has been developed, enabling seafood processors to automate and digitize their production, quality control, costing, traceability, cold chain, and inventory workflows using tablet computers, sensors, and IoT devices in real-time on the factory floor. This software is a “low-code” web app that can be easily configured for both simple and complex workflows, suitable for small or large production facilities, and adaptable to the wide variety of seafood processes, including live shellfish, fresh and frozen fish, smokehouses, and industrial-scale canneries. The workflow platform includes advanced modules for IoT hardware integration, artificial intelligence, advanced analytics and reporting, a wireless cold-chain sensor, a consumer tracing app, and computer vision for automated inspection. Generative AI is also integrated into the platform, allowing users to “talk to their data” and upload documents to train the large language model. The platform provides value to customers in three core areas: First, the software and AI reduce labor costs by making data collection, management, and reporting more efficient. Second, the software enables real-time process and inventory control, replacing outdated analog paper record-keeping. Third, the software reduces data errors and strengthens traceability, improving compliance with third-party certifications and food safety regulations. Additionally, it includes AI algorithms for yield prediction, anomaly detection, demand forecasting, and drain weight prediction in the fish canning sector. The software includes a core low-code workflow platform that can be configured for many different types of workflows and processes. The platform can be hosted on the cloud or on premise and includes features such as image and document uploading, inventory and logistics management, cost accounting, email and SMS notifications, data validations and real-time calculations, software integrations, and more. The core platform also includes several operational modules, such as: An advanced analytics module for data visualization and reporting. A generative AI module for exploring data and documents uploaded to the platform, enabling users to “talk to their data”. An interoperability module built on the standards of the Global Dialogue for Seafood Traceability and EPCIS supply chain protocols. An IoT connectivity module for label printers, weigh scales, scanners, and other devices A cold chain module with a remote, wireless temperature sensor communicating via LoRaWAN. A smart camera module programmed with computer vision models for automated visual inspection. An AI-enabled digital helper module programmed with machine learning algorithms for yield prediction, anomaly detection, demand forecasting, drain weight prediction (in tuna canneries), and more. A consumer tracing app that enables seafood businesses to share supply chain and food provenance information with consumers who can trace a QR code. The technology ideal collaborators are seafood manufacturers and supply chain operators. The software and AI platform and optional modules have the following potential digitization applications: Fishing vessel unloading Seafood Production and Quality Control Inventory and Warehousing Sales Orders, Fulfilment and Shipping Laboratory sampling and testing Compliance, ESG and Traceability Reporting Cold chain monitoring Cost accounting (manufacturing) Asset management The technology owner is seeking collaboration with seafood industry stakeholders, including manufacturers, suppliers, and distributors in Singapore and Southeast Asia, who are interested in improving efficiency, traceability, and compliance within the supply chain. Seafood is the most globally traded protein with a trade value of some $194 billion dollars, representing almost half of all seafood production in the world. Approximately 75% of seafood processors and supply chain operators manage their core operations with paper records and Microsoft Excel, lacking real-time business insights and struggling with process and inventory control. The technology offers the following: The platform offers easy and flexible configuration through low-code schemas, providing a user-friendly alternative to the extensive customization required by legacy software solutions. A complete all-in-one solution that includes core workflow digitization and inventory management, advanced analytics, computer vision for automated inspection, process automation, predictive analytics, generative AI, hardware integration, cold-chain monitoring, and consumer marketing and supply chain transparency. Expertise in seafood processing and supply chains is leveraged to enhance data collection and optimization, specifically addressing the needs of seafood companies. Applies artificial intelligence to seafood processing, utilizing advanced machine learning, computer vision, and generative AI technologies. Seafood, Fisheries, Supply Chain, Smart Manufacturing, Software, AI, ML, Computer Vision, Generative AI, Traceability Infocomm, Video/Image Analysis & Computer Vision, Artificial Intelligence, Internet of Things, Foods, Processes, Sustainability, Food Security
Nano Delivery Technology That Resolves Root Rot Diseases in Food Crops
Root rot diseases in food crops are devastating diseases currently without solution. Examples of such diseases are the Basal Stem Rot in oil palms, Fusarium Wilt in bananas, and Phytophthora Root Rot in citrus.  While fungicides have in vitro efficacy, most do not possess phloem mobility and therefore cannot reach the roots to effect treatment. Thus, despite widespread usage of fungicides, root rot diseases are still inadequately treated or are not treated at all. This Nano Delivery Technology imparts phloem mobility to fungicides, allowing them to reach the roots from the application site to treat and protect the crops. The technology is designed as a ready-to-use adjuvant that works with commercialised fungicides. Growers can independently and safely nano encapsulate the fungicides with basic mixing equipment and a simple, one-step mixing process. This technology is patent-pending and ready to market. Imparts phloem mobility to fungicides  Enables fungicides to effectively reach roots from the application site Sustains a residual effect for up to 12 months per treatment Encapsulation material is naturally derived and biodegradable Works with commercialised fungicides such as Hexaconazole 75% WG, Dimethomorph 80% WG and Tricyclazole 75% WDG Simple, one-step mixing process can be handled independently by growers Proven effective in treating root rot disease in oil palms  Helps growers cut losses by 75% The technology can be easily scaled to treat other phloem restricted diseases such as Citrus Greening and address problem statements such as weeds and nutrient deficiencies in food crops. Climate change that results in extreme weather conditions such as heat waves and floods exacerbates the spread and intensity of root rot diseases in food crops. At this time, there is also no known or effective treatment for such devastating diseases. The combined global economic losses from root rot diseases in oil palms, bananas, and citrus alone are more than US$ 5 billion per year. Treats root rot diseases that are currently without solution Works with commercialised fungicides Reduces reapplication frequencies hence labour requirements Accelerates ESG compliance through reduced usage of fungicides Increases growers' climate change resilience Patent pending Ready to market agriculture, agritech, agrifood tech, agrifoodtech, food security, nanotechnology, nano, nano materials, nano encapsulation, agrochemical, crop care, crop protection, herbicide, fertiliser, fertilizer, pesticide, fungicide, root rot, phytophthora, basal stem rot, fusarium wilt, panama, huanglongbing, hlb, citrus greening, delivery technology, precision delivery, delivery, encapsulation, oil palm, HLB, nano delivery, ganoderma, adjuvant, nano particles Materials, Nano Materials, Chemicals, Agrochemicals, Life Sciences, Agriculture & Aquaculture, Additives, Sustainability, Food Security
Precision Delivery Technology Enhancing Biological Pesticide Efficacy
With mounting concerns regarding the environmental and health impacts of conventional chemical pesticides, there is a noticeable shift towards biological alternatives. This trend is fueled by a global demand for sustainable agricultural practices and safer, more environmentally-friendly produce. However, a significant challenge persists: the comparatively lower efficacy of biological pesticides. This technology addresses the challenge of low efficacy in biological pesticides, often caused by environmental factors such as heat, UV exposure, and runoffs, especially prevalent in tropical regions. It utilises plant-derived, biodegradable materials to encapsulate the biological pesticides, protecting them from environmental factors, thereby extending their residual treatment effect and reducing usage volumes and re-application frequencies.  Plant-derived, biodegradable encapsulation material Compatible with commercialised biological pesticides (e.g., bacillus thuringiensis) Simple, one-step encapsulation process completed within 15 minutes using existing mixing apparatus Compatible with existing application equipment such as backpack sprayers and drones Imparts rainfastness within 1 hour Sustains residual effect for up to 3 months per treatment The technology demonstrates versatility, with potential applicability in tackling an array of agricultural challenges such as diseases, weeds, and nutrient deficiencies. It is also applicable for commercialised insecticides such as chlorantraniliprole and imidacloprid. Tailored to address challenges specific to tropical agriculture Enhances efficacy of biological pesticides Reduces biological pesticide consumption Lowers re-application frequencies, minimising costs and labor requirements agriculture, agritech, agrifood tech, agrifoodtech, food security, climate change, encapsulation, agrochemical, crop care, crop protection, herbicide, insecticide, fertiliser, fertilizer, pesticide, fungicide, bagworm, delivery technology, precision delivery, delivery, farming solution, foliar spray, biologicals, bacillus, bio, bio-based, bacteria, fungi Chemicals, Agrochemicals, Life Sciences, Agriculture & Aquaculture, Additives, Bio-based, Sustainability, Food Security
Plasma Activated Water Device for Agricultural Produce Decontamination
Unsafe and contaminated food poses significant global health risks, affecting approximately one in ten people worldwide and leading to economic losses of around $110 billion annually in low and middle-income countries due to reduced productivity and medical expenses. This issue also accounts for an annual burden of 33 million disability-adjusted life years and causes about 420,000 premature deaths. Additionally, the escalating use of pesticides in food production to meet the demands of a growing population contributes to approximately 200,000 deaths each year due to toxic exposure, posing severe threats to both human health and the environment.  This technology, Plasma Activated Water (PAW) provides an eco-friendly, chemical-free decontamination technique which eradicates residual chemicals, inhibiting microbial growth in agricultural produce. The technology is highly effective (95% reliability) in breaking down organic compounds, including pesticides, and destroying microbial pathogens on the surfaces of fruits and vegetables, resulting in an extended shelf-life.  PAW eliminates the need for potentially toxic chemicals for washing, minimizes chemical residues, reducing environmental impact and agricultural losses, thereby lowering costs. It effectively degrades pesticides, enhancing food safety while maintaining nutritional quality and sensory qualities.   The technology owner is seeking collaborations with agricultural companies or Institutes of Higher Learning to test-bed their technology.  Plasma Activated Water (PAW) is an innovative technology that harnesses the reactive properties of plasma to enhance the characteristics of water. The process involves generating an electrical discharge in a gaseous environment, creating a plasma rich in reactive oxygen and nitrogen species (RONS). The use of pin-hole technology allows for precise and controlled plasma generation at the required intensity and location. This technique involves creating a small, focused plasma jet through a pin-hole or narrow aperture, which directs the plasma stream accurately to the target area. This precision ensures effective application, reducing the risk of unintended exposure and increasing treatment efficacy. The focused nature of the plasma jet also minimizes diffusion, resulting in more efficient energy use and lower operational costs. The reactive species interact with the surface of agricultural produce, they effectively deactivate or destroy pathogens, bacteria, and pesticide residues. PAW technology significantly enhances food safety by reducing contaminants in produce by over 50-80%, compared to just 30% with standard water washes.  This technology has the potential to transcend agricultural applications, harnessing its pathogen- and bacteria-destroying capabilities.  Healthcare and Medical Sector: Can be used to irrigate wounds, leveraging its strong antimicrobial properties to clean and disinfect wound sites, promoting faster healing and preventing infections Industrial Wastewater Treatment: To treat industrial wastewater by breaking down pollutants and pathogens, ensuring that the treated water meets environmental regulations  Superior Decontamination Efficiency: Highly Effective: PAW technology significantly reduces contaminants, achieving over 50-80% reduction in pathogens and pesticide residues compared to just 30% with standard water washes. Its decontamination efficiency stands at 95% reliability Broad-Spectrum Antimicrobial Action: PAW effectively eliminates a wide range of microorganisms, including bacteria, viruses, and fungi, providing comprehensive protection Eco-Friendly and Chemical-Free: Minimized Chemical Use: Unlike traditional methods that rely heavily on chemical disinfectants, PAW uses plasma to activate water, significantly reducing the need for potentially harmful chemicals Harmless Byproducts: The reactive oxygen and nitrogen species (ROS and RNS) generated by PAW break down into harmless byproducts, such as water and nitrogen, making it environmentally friendly Environment, Clean Air & Water, Sanitisation, Foods, Quality & Safety, Sustainability, Food Security
Capitalising On Spent Coffee Grounds (SCG)
Only 20% of actual coffee is extracted from beans to produce coffee in its beverage form, leaving the remaining 80% (six million tons annually) deemed as spent coffee grounds (SCG) to be disposed or used in landfills or as non-food product components to make fertilisers, furniture, deodorisers or skin care products. A technology was created to counteract SCG wastage and valorise it for human consumption. This particular invention comprises of methodologies to create two types of ingredients using leftover SCG - oil-grind and water-grind processed SCG. A simple, reproducible method of conching is employed to convert leftover SCG into smooth pastes, where specific conching parameters help refine the SCG to an acceptable particle size, eliminating grittiness in numerous valorised products similar to SCG. The product utilises common ingredients like oil and water to conche SCG with improved taste and textural properties. The shelf stability and nutritional composition (including caffeine) of the ingredients were also validated to ensure the food possessed good sensorial properties and are scale up ready. This technology increases SCG’s potential use as a versatile ingredient in different food applications. The technology provider is seeking off-takers from food manufacturers, food services industry, companies interested to valorise side streams to turn SCG into edible compounds. Technology Features: Uses reproducible method of conching into a functional ingredient with high insoluble dietary fibre (13g/100g) content. Fibre content is higher than instant coffee powder (<1g/100g) and coffee flavourings (0g/100g) and Lower caffeine levels (133mg/100g) compared to regular coffee (3600mg/100g) and is similar to decaffeinated beverages Sodium (<3mg/100g) and sugar free (<0.1g/100g)  Additive free (clean label) Specifications: SCG with particle size ranging between 4.82µm D(v,0.1) to 39.3 µm D[4,3] Moisture content 58.6% The technology was validated by incorporating SCG ingredients into a range of common food products such as beverages and ice cream (water-grind SCG), spreads and chocolate (oil-grind SCG) to help relevant food industries gain a deeper understanding of SCG valorisation, for a greater adoption among food manufacturers to create products using SCG. Can be developed into Ready-to-Drink (RTD) beverages, coffee ice cream, coffee spreads and confectionary (e.g. chocolates and cakes) Companies specialising in upcycling sidestreams and sustainability can explore this technology   Coffee consumption in Singapore increased by 4.8% in the last seven years with 105000, 60kg bags of coffee consumed in 2023 and the market is growing. There is a global push to reduce food side streams and Singapore's Zero Waste Masterplan on the treatment of such side streams by commercial and industrial generators, which aligns with the proposition of this technology. Similar technologies such as these may not be as cost effective. The technology uses basic ingredients such as water and oil and is easily reproducible. It does not involve high CAPEX investment or vigorous training processes that disrupts production process. Conching machines are commercially available, and the licensee can choose to purchase the equipment based on their production scale requirements. The conching process is easy to pick up. In addition, replacing coffee flavouring agents with SCG, customers can benefit from the natural and functional coffee flavour and caffeine SCG imparts into all the food applications. The product is rich in insoluble fibre which can help to regulate blood cholesterol and glucose levels. Caffeine is known to stimulate the Central Nervous System (CNS) in the body, which can improve cognitive abilities (e.g. alertness, reaction time). Coffee, Spent Coffee Grounds (SCG), valorisation, water-grind SCG, oil-grind SCG, scale-up, accelerated shelf-life evaluation, food safety and quality, food industries, technology adoption Foods, Ingredients, Processes, Waste Management & Recycling, Food & Agriculture Waste Management
DNA Test Kit for On-site Diagnostics of Tropical Crop Diseases
Fast crop disease management is important to ensure sustainable production. Many tropical crops suffer from infectious diseases that spread and kill plantations. Previously, new land had to be allocated to replant crops in disease-free areas. This is now more challenging because land conversion implies deforestation. Thus, one way to improve the metrics of both production and sustainability is by testing for infection before moving the non-infectious material (i.e. in nurseries). However, as PCR testing in tropical countries is more challenging due to logistics and other factors, testing on-site would be a preferred option. This technology is a unique, portable, self-administered DNA detection kit to be used directly on-site to test for the DNA of the pathogen (virus, fungus etc.). Developed in Switzerland, the technology has already shown one use case for cocoa testing in West Africa and is shipped in the country without a cold chain. The average development time needed to create a custom DNA test kit to fit a specific crop disease is 4 weeks.  The developed kit will encompass sample preparation, isothermal amplification, and detection with a small device capturing data, timestamp and GPS location. Simple to use, with no technical equipment or methods: no spin-columns, no centrifuges, no thermo-cycler, no gel electrophoresis. A non-technician can pick up the skillset in a day. Average hands-on time with the DNA test kit is 5 minutes and results can be obtained within 1 hour. After sample preparation, the device has been shown to be robust enough to tolerate agitation (e.g. moving car in a jungle), minimising waiting time on-site. The technology can be applied in Integrated Pest Management Breeding  - identifying DNA markers for beneficial traits of novel varieties Commodity Trading  - predicting crop harvest quantities, for companies working with tropical crops like cocoa, coffee, tea, rice, banana or cassava. Test data aggregation/intelligence services can also be developed to support efforts in development of novel breeds/varieties, deployment of novel agro-forestry protocols, production of pathogen-free planting material, longer term yield forecast from identification of asymptomatic infected farms and sale of precision chemicals (biostimulants, fertilizers, pesticides) based on test result evidence. The DNA testing technology, in theory, applies also to animal diseases (i.e. aquaculture). This market area has not been developed by the company but can be explored on a preliminary basis.    Paradigm shift in the food industry, with customers expecting to see displays of sustainability, welfare, quality and ethics – to help inform and validate their food choices Global movement to hold food companies accountable for their supply chains has uniquely positioned testing, inspection and certification as a core solution that can be achieved with this technology. According to the Food and Agriculture Organization (FAO), plant diseases cost the global economy around $220 billion each year. There is a significant upside potential to expand the technology capabilities to other identified growth markets Test done on-site in tropical areas (temperature, humidity) without strict cold chain which traditional methods like PCR require, allowing for first mile testing. Early detection of infections in asymptomatic crops reduces the disease impact on production yield and sustainability metrics (less deforestation) Life Sciences, Agriculture & Aquaculture
Amphibian Collagen: A Sustainable-Derived Biomaterial with Multi-functional Capabilities
Collagen is a structural protein prevalent in the connective tissues of all organisms, and is the building block of biomaterial that is essential in wound healing and tissue regeneration. Through a patented extraction method, a novel Type I Amphibian collagen has been valorised from discarded skins, an agrifood waste stream and processed into a medical grade collagen biomaterial. The extracted pristine native amphibian collagen possesses unique properties, combining attributes associated with aquatic and land-based collagen sources, giving the extracted collagen more versatility than conventional sources of collagen. The Type I Amphibian collagen possesses a higher biocompatibility and water solubility as compared to mammalian sources of collagen, with a better thermostability profile, than marine sources of collagen. The technology provider has demonstrated the medical application of this extracted collagen by developing a range of specialised wound dressings, specifically designed for the management of chronic wounds. These dressing will significantly improve clinical outcomes and increase the rate of chronic wound closure.  The technology provider is looking for partnerships or collaborations to transform this pristine collagen into medical products. Additionally, with a pristine collagen extract, hydrolysing them into smaller fragments (collagen peptides) that can be customised to the needs of the partnership or collaboration, for the medical/cosmeceutical/nutraceutical industry.  A unique pristine Type 1 collagen of amphibian origin, in its native triple helix form. Relatively high denaturation temperature of ~43°C, to withstand the average human body temperature of 37°C, thus retaining its functionality better in human body as compared to marine collagen. Can serve as a matrix or carrier for bioactives such as anti-microbials or anti-inflammatory drugs or compounds that confer additional specific therapeutic benefits. Reduced risk of adverse reactions or rejection compared to traditional biomolecules, thereby increasing clinical safety. Can be easily chemically cross-linked to form a microporous scaffold that facilitates tissue regeneration and accelerates the rate of re-epithelialization. Proven to inhibit/deactivate matrix metalloproteinase (MMPs), producing an optimal healing environment for the wound. Exists as Nano Fibres that are 20–25 nm in diameter with a length of 200–400 nm, enhancing cell-material interactions and better supporting fundamental cellular processes. Highly absorbable and thus able to remove wound exudate, allowing for a reduction in inflammation and oedema at the wound site.  Amphibian collagen can be used widely for biomedical applications, nutraceutical products, as well as cosmetics. Well known for its biocompatibility in human tissue, collagen is widely used in clinical practice for accelerated wound healing, post debridement. The main clinical usage of this technology allows collagen to act as support matrices for the repair of matrix-rich tissues that have been damaged and replacing scaffolds for tissue filling.  In the cosmetic front, collagen is extremely suitable for the care of dry, UV-exposed, and environmentally stressed skin as well as ageing skin. It is one of the main constituents of cosmetic formulations due to its moisturising, regenerating, and film-forming properties. However, the technology provider is also keen to collaborate with partners to explore beyond the applications stated above. With increasing consumer awareness of skincare and beauty products, the collagen market is expected to have a continued upward trend. Due to a greater emphasis being placed on developing products that are environmentally friendly and sustainable, the approach of upcycling amphibian skins that would otherwise be discarded as waste, will be embraced by the consumer fraternity. The global collagen market was valued at USD 9.66 billion in 2022 and is expected to expand to USD 19.98 billion in 2030 at a CAGR of 9.36 % during the forecast period of 2023-2030. Though intense competition, with many established brands and new entrants in the extraction of collagen, this technology is unique in the resources used – amphibians. There is no commercial available amphibian collagen in the market and the technology provider is the first to have demonstrated the use of this in wound dressing and cosmetics. Amphibian collagen is expected to be widely embraced as there are no religious restrictions, unlike other traditional sources of collagen.  A medical grade collagen with intact native triple helix structure. A special mechano-chemical method of extraction that form a sustainable waste valorisation process. Maintains unique properties of both aquatic and land-based collagen, unlike current sources of collagen. Nano-collagen fibres that are of 175-187% thinner than those of mammalian collagen. Is easily processed into gelatin and easily hydrolysed to form collagen peptides. Collaborations can be medical or cosmetic related. White labeling options available. All products conform to ISO10993 and can be ETO sterilized. Amphibian Collagen, Wound Healing, Cosmetic, Environmental Sustainability, Biocompatibility Personal Care, Cosmetics & Hair, Healthcare, Medical Devices, Pharmaceuticals & Therapeutics, Waste Management & Recycling, Food & Agriculture Waste Management