innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Wearable Sensing and Haptics Technology for Virtual Reality (VR)
This technology portfolio covers wearable sensing and haptics for Virtual Reality (VR). The wearable sensors can provide gesture-based control in VR without the need for cameras, providing interactive control for VR for lower end headset. The sensor use electronic textiles and a patented sensing scheme that requires no additional electronics except a microcontroller. They present ultralow latency (<1ms), can distinguish between wearer and non-wearer and have exceptional noise rejection. The haptics technology allows for simulation of resistance and micro sensations on the fingers and palm. This is crucial for applications like surgical training, as surgeons routinely rely on their sense of touch in real world scenarios. The jamming technology uses textile-based actuators and pneumatics, making it the lightest wearable technology for haptics.
Precision Medicine for the Management of Chronic Inflammatory Diseases
Systemic drug administration has conventionally been prescribed to alleviate persistent local inflammation which is prevalent in chronic diseases. However, this approach is associated with drug-induced toxicity, particularly when the dosage exceeds what is necessitated from the pathological conditions of the diseased tissues. This technology developed is a novel drug delivery technology that is activated to enable the release of appropriate drug payload according to the patient’s condition on the level of disease severity. The drug delivery system is a modular hybrid hydrogel carrier encapsulating the required anti-inflammatory drug which is triggered to release upon exposure to elevated markers of inflammation such as increased protease activity which is commonly upregulated in inflammatory diseases.   The technology has been validated for its material, safety, and toxicity studies on ex vivo exudates of clinical samples, in vivo wound model, and arthritis diseased mouse model. The primary targeted indication is Rheumatoid arthritis based on its significant disease unmet need and market size. It aims to become a platform technology as an effective therapy against chronic inflammatory diseases such as inflammation bowel diseases, chronic wounds and topical application. The convenience of the technology offers significant societal benefits, particularly for ageing populations where the incidence of pain and inflammation arising from diseases becomes prevalent with age while potentially eliminating adverse side effects from traditional delivery of drug administration.  The technology owner is seeking for collaborations with clinicians, biopharma, biotech companies looking for novel drug delivery systems.
Modular Sanitary Device for Electroproduction of Ozonated Water with Sanitising Properties
With the recent surge in the risk of pathogens and viruses, there has been a strong demand for hygiene-focused products globally. In public health, there is an increasing need to obtain more sterilised water and to create a hygienic environment with sterilised water. Ozone dissolved in water, commonly known as ozonated water, has been used to produce safe drinking water at water purification plants because of ozone's sanitising properties. However, conventional gas dissolution methods have limited their applications because it is difficult to incorporate both safe ozone production and ozone dissolution into water in the same small product. This technology is a modular sanitary device that is able to electro-produce ozonated water for sanitisation. This device can, on-demand, instantly generate ozonated water via electrolysis. The ability for on-demand generation circumvents the problem where ozonated water loses its sanitising properties over time. Furthermore, this modular device can be easily designed to have variable performance depending on the number of devices connected and the control of current and flow rate. Therefore, the device can be easily designed to be integrated into existing products (e.g., household water purifiers, etc.). Lastly, this compact device that can efficiently generate sterilising ozone water is expected to address dissolution problems in various systems such as public health, medical treatment, etc.
Scalable Technology Converting Fruit By-products to Functional Food Ingredients
Singapore has a high consumption of fruits and vegetables, both locally produced and imported, and a significant portion of the total waste generated is derived from fruits and vegetables. These fruits and vegetables contain untapped nutritional and functional properties that can be upcycled into higher value products. This institute of higher learning has developed a technology with the know-how to cultivate microorganisms and a series of zero-waste extraction and purification methods to maximize the value of fruit peels into functional food ingredients.  This technology is designed for three types of industry players: i) fruit vending/processing industry with abundance of good quality fruit by-products; ii) waste management industry with technologies to value add to the by-products; and iii) start-ups with keen interest to upcycle by-products into novel food ingredients.
Soft Robot for Assistive Care of the Aged
Population aging is a global phenomenon as most industrialized countries are experiencing growth in the size and proportion of elderly citizens in their population. The percentage of older adults is estimated to be double by 2050 than that in 2019, which will place new challenges on the social economy and healthcare. The increasing population of elderly people requires great attention to be paid to age-related problems. Especially, the decreased physical capacities cause elderly people to rely on others to perform daily activities such as showering, dressing, and eating. The lack of independence in activities of daily living (ADL) decreases their quality of life and exaggerate financial burden for family healthcare.   According to studies on affected daily activities of older adults, the showering activity needs more frequent assistance than any other ADL. Existing commercial products, such as Tutti Assisted Bath Tub and Sit & Shower, can provide automated bathing assistance for the elderly people. However, the available products are usually time-based passive cleaning that lacks active physical interactions with users, and thus they do not have some basic functionalities during showering such as scrubbing and wiping. Alternatively, robotic arms can provide active support in showering activity. Recent soft robotics technologies ensure safe and comfortable human-robot interactions. With different types of actuation (e.g. pneumatic, cable-driven), soft robotic manipulators can have dexterous motions and adaptable stiffness to achieve desired tasks.
Augmented Reality Artificial Intelligence Glasses
Augmented Reality (AR) Artificial Intelligence (AI) Glasses are transforming the landscape of industrial and field applications. Designed to streamline processes and improve efficiency, these glasses are a ground-breaking solution to the necessity of instant, accurate, and engaging data presentation.  Housed in a pioneering, lightweight design, these AR AI Glasses effectively address the challenges faced with conventional AR devices, including their bulky nature, short-lived battery life, and limited connectivity. By ensuring an incredibly low heat signature, extended battery life, and compatibility with Wi-Fi, 4G, and 5G networks, these glasses have been developed with users' comfort and usability in mind, ensuring efficient performance throughout the day.  These glasses are a valuable asset to a variety of sectors, such as manufacturing, logistics, healthcare, and construction, that value precision, efficiency, and safety. By seamlessly integrating sophisticated technologies like AR and AI into everyday operations, the glasses eliminate the need for extensive staff retraining or major procedural changes. They provide real-time information, enhance remote collaboration, and come with built-in security features like facial recognition, promising to fundamentally change how tasks are executed within these industries. 
Material and Tools Tracking in Manufacturing
Effective tracking and management of Work-In-Progress (WIP) and inventory across a manufacturing facility are key to maintaining productivity and operational efficiency. Despite this, misplaced inventory and inefficient tracking remain common problems within the sector, leading to time wasted on locating items, losses due to unaccounted inventory, and ultimately, a reduction in productivity.  To tackle these challenges, an innovative solution has been developed that integrates advanced technologies, sophisticated hardware, and robust software features to optimize manufacturing operations. This solution provides real-time traceability of WIP and inventory throughout a factory, thereby reducing time wasted in locating items and preventing losses due to unaccounted inventory.  The solution seamlessly integrates with various systems including Manufacturing Execution Systems (MES), Preventive Maintenance (PM) systems, and Enterprise Resource Planning (ERP) systems. This integration capability allows it to trigger alerts, visualize processes, and reduce waste, thereby streamlining operations and minimizing inefficiencies. 
Middleware for Non-Intrusive Integration of Equipment in Manufacturing Environment
Integration of different machinery to the MES systems and facilitating interaction between them is a common theme in Industry 4.0 implementation. This task can become complicated due to the presence of multiple vendors and legacy systems on the production floor. This invention is a software stack which can be classified as a middleware or control software. The middleware offers an intermediary communication for the different standalone machines to communicate and perform synchronised functions. The system can further be customised to extend its functionality to suit an end user's needs.
Autonomous Wheelchair
Wheelchairs provides individuals with limited mobility the ability to move around independently. Compared to manual wheelchairs, motorized ones offer power-assisted locomotion for greater ease of movement. A local University research team has developed a software pipeline that takes motorized wheelchairs to the next level, providing autonomous navigation capabilities and offering a greater sense of autonomy. With efficient navigation, savings in manpower and time (e.g., caregivers, wheelchair assistance) can also be realized. The tech owner is seeking partners to collaborate on further development and test-bedding for mobility devices like wheelchairs as well as other autonomous mobile robots (AMR) applications.