innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Advanced Green Building Performance Assessment Platform
The advanced green building performance assessment platform, developed by a Singapore-based technology enterprise, addresses the critical challenge of inefficiencies in green building projects due to limited data transparency and coordination among industry stakeholders. While numerous tools offer building performance evaluations, this platform distinguishes itself through its AI-driven, comprehensive, and user-friendly approach. Standard energy assessment software takes a long time (typically 6-8 weeks) to complete similar assessment, requires special skillsets to use the software and is very costly. These are among the reasons that brings down the motivation of building owners. The proposed platform empowers stakeholders to access instant assessments and solutions, significantly reducing transaction times, marketing costs, and investment risks. Its AI-powered cloud-based platform facilitates the assessment and analysis of building performance. It aggregates diverse building data sources, applies physics-based simulations and machine-learning analytics, and creates digital twins. The platform serves as a catalyst for sustainable development through digitalization, catering to the urgent need for decarbonization strategies worldwide. The technology owner is seeking co-development and test-bedding partnerships with real estate owners including commercial building and residential building owners, as well as smart city planners.
Modular, Easy-to-use, Cloud-based Bioreactor for Advanced Bioprocessing
This biotechnology pertains to a modular cloud-based bioprocessing system designed to streamline and enhance the cultivation and analysis of biological cultures. Addressing the complexities and constraints of traditional bioprocessing, this technology simplifies operations, making advanced bioprocessing tools accessible to a broader range of users. It has shown its versatility across various segments including educational institutions, research labs, biotech and bio-manufacturing companies and even within the food service industry, providing an efficient, flexible, affordable and scalable solution for growing biological cultures.
Long-Life, Broadband and Heat-Free Near-Infrared (NIR) Light Source
Near-infrared (NIR) light, part of the electromagnetic spectrum just beyond visible light, has various applications, particularly in vital sensing and food analysis. However, existing technologies for generating NIR light present certain limitations. Traditional halogen lamps can emit a continuous spectrum from visible to NIR wavelengths but pose challenges such as considerable heat generation, short lifetime, and difficulties in light distribution control. As a modern alternative, near-infrared LED arrays offer advantages such as no heat radiation and long lifespan. However, they are not suitable for applications requiring a wide wavelength range due to a lack of continuous output across the entire NIR spectrum. The wavelength intensity variation of NIR-LED arrays also affected the consistency of sensing and analysis. To overcome these challenges, the technology owner has developed a unique NIR phosphor as a heat-free light source with a wide spectrum range, enabling degradation-free analysis. Especially in food analysis, prolonged exposure to a halogen lamp may damage food. In addition, the long lifetime of this NIR source reduced the need for frequent replacements, leading to cost savings. Moreover, it can irradiate broadband NIR light from a single source, enabling easy light distribution control and wavelength axis alignment and reducing wavelength intensity variation within the irradiation plane. These advantages ensure consistency and accuracy in sensing and analytical applications. The technology owner is seeking R&D collaborations with industrial partners interested in integrating this advanced NIR light source into their applications.
Water-based Barrier Coatings for Paper Packaging
Paper packaging is a versatile material used for a wide range of products. Its widespread adoption is due to its renewable and relatively low-cost resource along with environmental benefits such as recyclability and biodegradability. While paper packaging offers several advantages, some drawbacks of the material include porosity and the lack of barrier properties against moisture, oil, and grease. To overcome these limitations, conventional coatings such as polyethylene (PE) or polyfluoroalkyl substances (PFAS) have been employed to impart the required barrier protection. However, during the paper recycling process, it is difficult to repulp the coated paper due to several factors and results in reduced recyclability of such packaging materials. The technology on offer is a water-based coating formulation that can be applied onto paper packaging surfaces to act as a barrier against grease, liquid water, and water vapour. The coating imparts barrier protection functionalities, improving the paper’s resistance to grease, liquid water, and water vapor significantly. Use of bio-sourced constituents in the coating also improves product sustainability. As the coating’s constituents are repulpable, recyclability of the paper packaging can be achieved. With increasing awareness of reducing packaging waste, the deployment of this technology will offer companies a recyclable paper packaging with notable barrier properties. The technology owner is seeking for R&D co-development, test bedding and IP out licensing opportunities of this technology with interested companies.
Cost-Effective and Non-Toxic Conductive Ink for Various Electronic Applications
Conductive ink, a functional ink that can conduct electricity, has emerged as an innovative and promising approach to revolution the manufacturing processes of electronics industry. There has been a rising enthusiasm for novel technologies dedicated to producing conductive inks, drawing growing interest from both the academic and industrial sectors. Compared to conventional silicon-based electronic devices that are more expensive and difficult to produce, these conductive inks empower the creation of printed electronic devices, offering notable advantages such as high flexibility, customisability, and cost-effectiveness. The technology owner has developed a simple synthesis process to fabricate conductive ink that exhibits excellent electrical performance. The as-synthesised conductive ink has been formulated to achieve a remarkable low resistance value, ranging from 557.4 Ω to 0.80 kΩ. As resistance is the inverse of conductivity, the low resistance value endows such conductive ink with excellent electrical conductivity even on a non-conductive paper substrate. Beyond functionality, such conductive ink is non-toxic, waterproof, and inherently economical, making it a cost-effective and sustainable solution. The technology owner is seeking co-development, out-licensing and test-bedding opportunities with industrial partners to deploy such conductive ink in various applications, i.e., printed electronics, semiconductors, sensors, energy storage, STEM educational tools, etc.
In vitro Diagnostic (IVD) Test kits for clinical laboratory professional and home uses
There is a high demand for invitro diagnosis (IVD) test kits for various diseases in ASEAN and this technology is suited to provide product support to commercialise IVD test kits especially for public health problems faced in ASEAN. Produced under ISO13485 certified production, the IVD tests have high sensitivity and specificity, especially supporting the specific types of local ASEAN microorganisms detection. The technology services have supported the production of test kits for infectious disease for specific conditions such as Covid-19 and Leptospirosis.
A Novel Blood Biomarker Test to Detect Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disease that mainly affects individuals above the age of 65. However, most patients are diagnosed only when significant symptoms appear, by which time severe brain pathology and neuronal cell death have already occurred, resulting in significant brain atrophy. Consequently, the optimal treatment window is often missed, leading to a fatal outcome. The technology is a simple, non-invasive, and accurate diagnostic solution for Alzheimer’s disease (AD), which can distinguish patients with AD from healthy people and evaluate disease status from a single drop of blood, with more than 96% accuracy. By combining proprietary machine learning algorithms for data analysis, this cutting-edge technology can be applied towards developing a clinical tool for population-scale screening, early diagnosis, staging and monitoring of the disease.
Nanofibrillated Cellulose: A Bioingredient For Skincare
The skincare industry is seeing an upward exponential shift in consumer preferences for natural and sustainable products with stricter regulations on materials and components bans which has been shown to result in long-term harm to the well-being of users. The current skincare chemicals and materials in the market possess various health challenges such as skin irritation and allergy where skincare and cosmetic companies are increasingly sourcing for sustainable, renewable, and safe bio-based materials. This technology presents a scalable solution to produce a bioingredient, nanofibrillated cellulose to replace petroleum-based materials in skincare.  Cellulose is an abundant material in nature, this technology develops a process to extract nanofibrillated cellulose for various applications. Nanofibrillated cellulose is a renewable biopolymer with high flexibility in structure which enables it to exhibit increased mechanical strength, optical, thermal and fluidic properties compared to cellulose. The nanostructure and rich hydroxyl groups allows for modifications in hybridization to fabricate materials ranging from films, membranes, soft gels and creams at reduced size and porosity.  The product has been validated to have excellent water retention, is highly biocompatible and can be applied as a thickening agent, emulsifiers, humectants, texture, and viscosity modifiers. Functional and cytotoxicity tests are completed to ensure the safety of the material. The technology owner is seeking to work with OEMs of skincare and cosmetic products to advance their business where sample testing are available. 
Nano Delivery Technology That Improves Consistency and Longevity of Fragrance Sprays
Fragrance and deodorising sprays for home care, fabric care and pet care applications often suffer from inconsistent and shortlived performance. This Nano Delivery Technology encapsulates fragrances, essential oils and other odourous compounds into nano sized biodegradable capsules that can anchor themselves efficiently to fibres and hairs, while regulating the release of the encapsulated compounds over prolonged time periods. The encapsulation process takes place at room temperatures, using low energy methods, that preserves the integrity of the actives. The technology is designed as a ready-to-use adjuvant allowing manufacturers to nano encapsulate the actives independently and easily using their existing process and production equipments.