Tech Bundle

Circular Economy

Through a circular economy approach, businesses can maintain their profitability whilst conserving natural resources. Reducing wastages in production, recycling of waste and by-products for new applications, use of sustainable alternative materials and intelligent waste management systems are some of the co-creation opportunities curated in this section for adoption by enterprises.

Capitalising On Spent Coffee Grounds (SCG)
Only 20% of actual coffee is extracted from beans to produce coffee in its beverage form, leaving the remaining 80% (six million tons annually) deemed as spent coffee grounds (SCG) to be disposed or used in landfills or as non-food product components to make fertilisers, furniture, deodorisers or skin care products. A technology was created to counteract SCG wastage and valorise it for human consumption. This particular invention comprises of methodologies to create two types of ingredients using leftover SCG - oil-grind and water-grind processed SCG. A simple, reproducible method of conching is employed to convert leftover SCG into smooth pastes, where specific conching parameters help refine the SCG to an acceptable particle size, eliminating grittiness in numerous valorised products similar to SCG. The product utilises common ingredients like oil and water to conche SCG with improved taste and textural properties. The shelf stability and nutritional composition (including caffeine) of the ingredients were also validated to ensure the food possessed good sensorial properties and are scale up ready. This technology increases SCG’s potential use as a versatile ingredient in different food applications. The technology provider is seeking off-takers from food manufacturers, food services industry, companies interested to valorise side streams to turn SCG into edible compounds.
Lixiviant for High Efficiency Extraction of Palladium (Pd) from Electronic Waste
The exponential growth of electronic waste (E-waste) generation is proliferating due to the ever-increasing demand for electrical and electronic equipment (EEE) driven by industrial revolution and development. The COVID-19 crisis has further accelerated the shift towards digital transformation, contributing to an upsurge in E-waste generation. To-date, the industrial practices of extracting palladium (Pd) from electronic waste and mining ores rely on hydrometallurgy techniques using highly corrosive acids, typically aqua regia at elevated temperature. The process poses severe hazards to workers and lead to environmental pollution. Aqua regia’s capability to dissolve many various metals results in low selectivity for Pd. Despite ongoing efforts to develop alternative methods, these methods often prove impractical for industrial adoption. The technology provider has developed a proprietary lixiviant capable of extracting palladium up to 4,000 ppm at saturation with high extraction efficiency and selectivity within 12 hours. This lixiviant is facile, cost-effective, and significantly less corrosive and hazardous compared to current industrial practices. Substituting fuming aqua regia with this lixiviant could enhance the protection of workers and environmental safety. Importantly, the proposed technology is highly compatible with existing hydrometallurgy processes, eliminating the need for companies to change their current infrastructure. An E-waste industry partner has successfully conducted a pilot-scale (5-Litre scale) evaluation, validating the effectiveness and applicability of the lixiviant on their Pd-coated samples. The technology provider is actively seeking industry partners interested in test-bedding and licensing of this technology.
Cost-Effective Protective Coating Enhancing Durability of Electrode Catalyst
Electrolysis has diverse applications across various sectors, such as household and industrial electrolyzed water treatment, soda electrolysis, electrolytic plating, electrodeposition, and hydrogen generation. In electrolysis using insoluble electrodes, the electrocatalyst acting as the reaction field for the electrode reaction undergoes gradual abrasion. Given the high cost of precious metals (i.e., platinum group compounds) used as catalysts, protecting the catalyst and reducing the wear rate are crucial for extending the lifetime of electrodes and reducing the maintenance cost. Current technologies include multilayer electrodes that have a surface layer of noble metal oxide on the electrocatalyst to reduce catalyst wear. However, this method proves more expensive than ordinary insoluble electrodes. Additionally, the surface layer cannot be recoated. To address the challenge, the technology owner has developed a proprietary protective coating that effectively protects the catalyst on the surface of existing insoluble electrodes. This solution enables effective electrode protection through an inexpensive coating, reducing catalyst consumption and electrode replacement frequency. The coating can be reused by recoating the electrode, also contributing to the perspective of “Circular Economy”. The technology owner is seeking R&D collaboration with industrial partners such as electrode manufacturers, coating manufacturers, and companies utilising insoluble electrodes in electrolysis, especially electrolytic plating and metal recovery. 
Water-based Barrier Coatings for Paper Packaging
Paper packaging is a versatile material used for a wide range of products. Its widespread adoption is due to its renewable and relatively low-cost resource along with environmental benefits such as recyclability and biodegradability. While paper packaging offers several advantages, some drawbacks of the material include porosity and the lack of barrier properties against moisture, oil, and grease. To overcome these limitations, conventional coatings such as polyethylene (PE) or polyfluoroalkyl substances (PFAS) have been employed to impart the required barrier protection. However, during the paper recycling process, it is difficult to repulp the coated paper due to several factors and results in reduced recyclability of such packaging materials. The technology on offer is a water-based coating formulation that can be applied onto paper packaging surfaces to act as a barrier against grease, liquid water, and water vapour. The coating imparts barrier protection functionalities, improving the paper’s resistance to grease, liquid water, and water vapor significantly. Use of bio-sourced constituents in the coating also improves product sustainability. As the coating’s constituents are repulpable, recyclability of the paper packaging can be achieved. With increasing awareness of reducing packaging waste, the deployment of this technology will offer companies a recyclable paper packaging with notable barrier properties. The technology owner is seeking for R&D co-development, test bedding and IP out licensing opportunities of this technology with interested companies.
Anti-Corrosion Thermoplastic Piping Systems
Anti-corrosion is important for piping systems because corrosion can lead to several problems including reduced flow capacity, leaks and ruptures, contamination, increased maintenance costs and reduced lifespan. While there are several approaches to mitigate these problems, a possible approach is to utilise thermoplastic materials which are lightweight, durable, and resistant to corrosion. This technology is a thermoplastic piping system lined with HDPE/LDPE linings that is corrosion-resistant, do not generate any waste (waste material can be recycled) and has a reduced carbon footprint. The piping system is easy to assemble and install, providing long service lives due to the high-quality thermoplastic materials being deployed in the system. By laying these thermoplastic pipes underground using native soil without sand-bedding, a reduction in CO2 is achieved and offers users a sustainable piping solution against conventional piping materials. In combination with proprietary welding technologies, the technology has the lowest rate of leakages with high guarantee of preservation of drinking water quality when used in water piping systems. The technology owner is seeking for co-development and test-bedding opportunities with asset owners to integrate the technology into their infrastructure, particularly with hydrogen producing and transporting companies.
Fully Bio-based, Biodegradable and Compostable Bioplastics
The use of bioplastics has grown rapidly in recent years as consumers and businesses become more aware of the environmental benefits of these materials. However, there are still some challenges that are inherent to bioplastics such as high costs in comparison to fossil-based plastics and that not all bioplastics are derived from bio-based sources, biodegradable or compostable. These materials also face processing limitations and lower mechanical properties which often results in the combination of fossil-based polymers being added to improve these properties. This technology aims to address these factors to increase the adoption of bioplastics in more applications. The technology is a new bioplastic material that is fully bio-based and compostable. Based on a reactive processing technology combining polyhydroxyalkanoates (PHAs) with other biopolymers and bio-based polymers, the resultant blend provides unique properties such as biodegradability (soil or water) and compostability (industrial and home). The material blends can be designed for processing using standard plastic processing technologies and modified for a wide range of mechanical properties. The technology owner is interested in co-development and out-licensing opportunities with Singapore plastic processing companies looking to develop new products/applications with bioplastics.
Economical and Sustainable Binder for Efficient Stabilisation of Marine Soft Clay
Offshore land reclamation has been an important strategy for Singapore to meet its land needs. However, the ultra-soft soil in the surrounding waters makes land reclamation extremely difficult. Besides, many infrastructure projects (i.e., tunnelling, deep excavation, etc.) are also challenging when encountering soft marine clay due to its poor engineering properties, such as high water content, high compressibility, and low shear strength. Currently, ordinary Portland cement (OPC) is the most common binder used for soft clay stabilisation through deep mixing or jet grouting. However, OPC is not very effective for the stabilisation of marine soft clay with high water content. In addition, the production of OPC leads to negative environmental impacts such as non-renewable resources, high energy consumption, and high carbon emissions. The technology owner has developed a sustainable novel binder, entirely from industrial by-products, that has high stabilisation efficiency for marine soft clay. Using the same binder content, the 28-day strength of the novel binder-stabilised soft clay can be 2–3 times higher than that of the OPC-stabilised clay. In addition, the novel binder has a lower cost and less environmental impact, making it an economical and sustainable alternative to OPC. This technology is available for R&D collaboration, IP licensing, and test-bedding with industrial partners in the construction and infrastructure sectors.
Eco-friendly Direct Conversion of Biogas into Liquid Fuels
Liquid fuels from biogas are a promising source of renewable and clean energy as they give a lower emission of sulphur dioxide, nitrogen oxide, and soot than conventional fossil fuels. They are sustainable and economically viable as they can be obtained from agricultural waste. However, transforming biogas into a high-value liquid fuel equivalent to diesel or gasoline requires a costly two-step process.  The technology developer has developed a novel enhanced capsule catalysts with unique core-shell structures that enable the production of high value-added liquid fuels from biogas in a single step with only one reactor. These capsule catalysts directly convert synthetic gas (syngas) into liquid fuels, which have improved petrol-like qualities. Therefore, these liquid fuels can be used either as diesel or gasoline substitutes without any modification to engines and existing refuelling facilities. The technology developer seeks companies looking for renewable and clean energy through the gas-to-liquid (GTL) technology to license and commercialise this technology. 
Biodegradable Adhesive
Biodegradable adhesives are a class of adhesives derived from natural materials such as as plant-based polymers or proteins, and they do not contain any synthetic plastics or other harmful chemicals. They are more environmentally friendly, as they do not release harmful pollutants into the environment when they break down. They are also often compostable, which means that they can be disposed of in a way that is beneficial to the environment. This technology is a patented environmentally friendly, biodegradable adhesive that overcomes the limitations of fossil-fuel based adhesives. Made from a natural polymer and other natural materials, this bio-adhesive can exhibit 100% biodegradability within 30 days, does not contaminate the environment and can be separated by water. The adhesive can be applied onto a variety of substrates including paper, leather, foams, and wood to name a few. The technology owner is interested in joint R&D projects with companies who require a biodegradable and sustainable adhesive solution.