

A next-generation, fully synthetic keratoprosthesis (KPro) has been developed to address severe corneal blindness in patients unsuitable for conventional corneal transplantation or existing KPros. Traditional osteo-odonto-keratoprosthesis (OOKP, “tooth-in-eye”) remains effective but is surgically complex, costly, and requires removal of a healthy tooth.
This innovation replaces autologous tissue with a 3D-printed Ti6Al4V titanium lattice skirt engineered for optimal biointegration, paired with a polymethylmethacrylate (PMMA) optical cylinder secured by a proprietary mechanical locking system.
The device is off-the-shelf, sterilised, and designed for single-stage implantation beneath a buccal mucosa graft, significantly reducing patient burden and simplifying logistics. Preclinical rabbit studies demonstrated excellent biocompatibility and stable tissue integration. The procedure eliminates the need for dental/maxillofacial surgeons and long waiting periods, making it particularly valuable in low-resource settings.
The ideal partners for this technology include medical device companies specialising in ophthalmology or surgical implants, contract manufacturers with ISO 13485 certification, and 3D printing companies experienced in producing medical-grade titanium components. Collaboration with such partners will support further development, regulatory approval, and commercial scaling of this next-generation keratoprosthesis for global deployment.
This innovation offers a synthetic, cost-effective, accessible alternative optimised for extreme ocular surface disease.