innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Water-based Barrier Coatings for Paper Packaging
Paper packaging is a versatile material used for a wide range of products. Its widespread adoption is due to its renewable and relatively low-cost resource along with environmental benefits such as recyclability and biodegradability. While paper packaging offers several advantages, some drawbacks of the material include porosity and the lack of barrier properties against moisture, oil, and grease. To overcome these limitations, conventional coatings such as polyethylene (PE) or polyfluoroalkyl substances (PFAS) have been employed to impart the required barrier protection. However, during the paper recycling process, it is difficult to repulp the coated paper due to several factors and results in reduced recyclability of such packaging materials. The technology on offer is a water-based coating formulation that can be applied onto paper packaging surfaces to act as a barrier against grease, liquid water, and water vapour. The coating imparts barrier protection functionalities, improving the paper’s resistance to grease, liquid water, and water vapor significantly. Use of bio-sourced constituents in the coating also improves product sustainability. As the coating’s constituents are repulpable, recyclability of the paper packaging can be achieved. With increasing awareness of reducing packaging waste, the deployment of this technology will offer companies a recyclable paper packaging with notable barrier properties. The technology owner is seeking for R&D co-development, test bedding and IP out licensing opportunities of this technology with interested companies.
Cost-Effective and Non-Toxic Conductive Ink for Various Electronic Applications
Conductive ink, a functional ink that can conduct electricity, has emerged as an innovative and promising approach to revolution the manufacturing processes of electronics industry. There has been a rising enthusiasm for novel technologies dedicated to producing conductive inks, drawing growing interest from both the academic and industrial sectors. Compared to conventional silicon-based electronic devices that are more expensive and difficult to produce, these conductive inks empower the creation of printed electronic devices, offering notable advantages such as high flexibility, customisability, and cost-effectiveness. The technology owner has developed a simple synthesis process to fabricate conductive ink that exhibits excellent electrical performance. The as-synthesised conductive ink has been formulated to achieve a remarkable low resistance value, ranging from 557.4 Ω to 0.80 kΩ. As resistance is the inverse of conductivity, the low resistance value endows such conductive ink with excellent electrical conductivity even on a non-conductive paper substrate. Beyond functionality, such conductive ink is non-toxic, waterproof, and inherently economical, making it a cost-effective and sustainable solution. The technology owner is seeking co-development, out-licensing and test-bedding opportunities with industrial partners to deploy such conductive ink in various applications, i.e., printed electronics, semiconductors, sensors, energy storage, STEM educational tools, etc.
Nano Delivery Technology That Improves Consistency and Longevity of Fragrance Sprays
Fragrance and deodorising sprays for home care, fabric care and pet care applications often suffer from inconsistent and shortlived performance. This Nano Delivery Technology encapsulates fragrances, essential oils and other odourous compounds into nano sized biodegradable capsules that can anchor themselves efficiently to fibres and hairs, while regulating the release of the encapsulated compounds over prolonged time periods. The encapsulation process takes place at room temperatures, using low energy methods, that preserves the integrity of the actives. The technology is designed as a ready-to-use adjuvant allowing manufacturers to nano encapsulate the actives independently and easily using their existing process and production equipments. 
Reconfigurable Workspace Soft Gripper
The Reconfigurable Workspace Soft Gripper (RWSG) is a bio-inspired, pneumatically actuated, shape morphing soft robotic gripper that is capable of rapid reconfigurability. It features passive retractable nails, bi-directional foldable petals, and a flexible palm to adapt to various grasping and manipulation tasks and requirements. The ability to rapidly reconfigure allows the RWSG to grasp a wide range of large, thin, hard, delicate, and deformable objects. These capabilities make the RWSG a uniquely advantageous tool for high mix low volume manipulation and packing scenarios such as food assembly, packaging of groceries, and packing of consumer electronics. 
Intuitive and Durable Capacitive Force Sensing Technology
Force sensing is used in a wide variety of applications and one of the primary methods of detection is the use of capacitance sensors. These sensor systems are based on parallel plate and MEMS technology. The force is detected by the shift in capacitance value. This response is nonlinear with respect to the load range and leads to a mismatch between the perception of the human operator and the actual output level. The systems are also difficult to scale due to higher cost of MEMS for larger sized sensors. The technology developed enables accurate detection of volume changes even in low load range by employing micro-pillars (micro-protrusions) which are just tens of microns in dimension. These micron structures are formed in a conductive rubber using an original microfabrication technology. These capacitive sensors have a high linearity with respect to the load and provide a more intuitive operation where human perception matches the output characteristics. The sensitivity characteristics – linearity, load range, and capacitive response to load, can be tuned to suit the application by adjusting the design of the micropillars. Since the change in capacitance is governed by the deformation behaviour of the conductive rubber, this technology is also robust and has a high durability and lifespan.
Next-Gen Flood Detection with Environmental Location Intelligence
In an era where environmental challenges are escalating, the need for precise and timely flood monitoring has never been more critical. Addressing this pressing issue is a state-of-the-art flood detection system that offers unparalleled accuracy in water level detection, down to the centimetre, and in real-time. Designed to resist environmental disturbances, this technology ensures consistent and reliable performance. Its self-sufficiency is highlighted by its connectivity via mobile networks and an ultra-efficient power system, which includes a solar panel ensuring sustained operation even in less-than-ideal sunlight conditions. The primary beneficiaries of this technology are government agencies and enterprises involved in environmental infrastructure projects. Additionally, businesses facing environmental challenges and seeking robust solutions will find this invention invaluable. By providing instant alerts on potential flood threats and integrating seamlessly with third-party management systems, this technology addresses a significant gap in the marketplace, ensuring safety, reducing potential damages, and saving lives.
Physical Climate Risk Analytics
This technology delivers physical climate risk analytics for any asset or portfolio. It combines climate hazard with consequence models, offering richer insights than typical climate risk screening tools. Outputs detail financial repercussions from damages, projected downtime, portfolio risk correlation, increased climate-induced risks, and various other actionable risk metrics. The technology has global coverage, uses high-resolution input data (30x30m), validated computations, and proper uncertainty quantification. Models integrate climate dynamics, providing these same risk metrics for future climate. Stochastic event simulations underpin all the models, which uniquely enables the computation of climate risk correlation across portfolios.
Wearable Soft Actuator-Sensor System for Muscle Assessment
This innovative wearable device, integrating an actuator and a sensor, addresses a pressing issue in the field of neuromuscular disease diagnosis and management. By enabling in vivo measurements of muscular elasticity and employing machine learning models for disease severity evaluation, it offers an objective and accessible solution. The wearable conforms to the human body, facilitating quantitative assessments by correlating elastic moduli with voltage amplitude, thereby eliminating the subjectivity of traditional assessments. It significantly enhances accessibility, breaking down barriers to muscle assessment, and introduces a remote monitoring capability that allows continuous tracking of muscle health during rapid joint stretches. This technology serves medical professionals, patients with neuromuscular diseases, and rehabilitation centers by providing a reliable tool for improved diagnosis and personalized treatment plans. In summary, this wearable device represents a transformative approach to assessment of muscle-related pathophysiological conditions, offering objectivity, accessibility, and remote monitoring, ultimately enhancing the quality of care and treatment outcomes.
Anti-Corrosion Thermoplastic Piping Systems
Anti-corrosion is important for piping systems because corrosion can lead to several problems including reduced flow capacity, leaks and ruptures, contamination, increased maintenance costs and reduced lifespan. While there are several approaches to mitigate these problems, a possible approach is to utilise thermoplastic materials which are lightweight, durable, and resistant to corrosion. This technology is a thermoplastic piping system lined with HDPE/LDPE linings that is corrosion-resistant, do not generate any waste (waste material can be recycled) and has a reduced carbon footprint. The piping system is easy to assemble and install, providing long service lives due to the high-quality thermoplastic materials being deployed in the system. By laying these thermoplastic pipes underground using native soil without sand-bedding, a reduction in CO2 is achieved and offers users a sustainable piping solution against conventional piping materials. In combination with proprietary welding technologies, the technology has the lowest rate of leakages with high guarantee of preservation of drinking water quality when used in water piping systems. The technology owner is seeking for co-development and test-bedding opportunities with asset owners to integrate the technology into their infrastructure, particularly with hydrogen producing and transporting companies.