innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Cost-effective Okara-based Shrimp Feed Formulation
Feed cost generally accounts for 60% to 70% of the total production costs in an intensive shrimp aquaculture system. Fishmeal, which is often the main ingredient of shrimp feed, is one of the reasons for the high cost. It is also unsustainable to use fishmeal as it is derived from fish, contributing to the depletion of other fish species on a global scale. The technology offer is an alternative protein source in shrimp feed that uses okara, a nutrient-dense side stream from soy milk and bean curd production. Direct application of unprocessed okara into shrimp feed may work, however, due to the presence of anti-nutrients, the absorption of protein and amino acids from the okara may be limited. The technology developer has formulated a shrimp feed with an optimum amount of processing to increase the digestibility and enhance the nutritional properties and at the same time lowering the cost of shrimp feed by up to 50%. Currently, the developer has developed shrimp feed suitable for L. vannamei shrimp species with complete or partial replacement of animal protein which is fish meal. The technology is available for IP licensing and IP acquisition as well as R&D collaboration with industrial partners who are keen to adopt the solution. 
High Accuracy NB-IoT-based Tracking Device
Caregivers often need to monitor the whereabouts of People with Intellectual Disabilities (PwIDs), who tend to wander off their usual route because of distractions or stress. Current measures to locate them are manual and time-consuming. Caregivers have to retrace the daily journey taken by the PwIDs and rely on the public to assist them.  This technology offer is a low-cost, reliable tracking and monitoring device, developed to enable caregivers to easily track the current location of the PwIDs. The tracking device uses Global Positioning System (GPS) to obtain location data, whereas the corresponding timestamp (date, time) is obtained from the Narrow Band Internet of Things (NB-IoT) network. The resultant timestamped GPS data can be sent to any cloud servers or IoT dashboards via NB-IoT communication. An existing issue with some current NB-IoT tracking system is, the timestamp may not be accurately tagged to the corresponding GPS location data, due to mis-synchronisation. This system is able to overcome such a problem, hence ensuring accuracy of tracking. The tracking device is encased in an access card form factor that can be worn around the neck, making it suitable for PwIDs as it is a familiar form factor to them. The technology owner is able to customise the tracking device; data can be streamed to a 3rd party application server for post-processing and dashboarding. The technology owner is keen to do R&D collaboration with tracking device design companies, and/or end application users such as PwID institutions, including those with existing tracking platforms.
Automated Environmental Control for Indoor Farming
Indoor farming presents a range of different challenges to crop yields compared to outdoor farming activities. Traditional outdoor farmers intuitively know what environmental factors affect the growth of the crop. Indoor farming, on the other hand, requires the farmer to simulate the optimal climate conditions for expected crop yields. The indoor climate can either contribute to the yields or, in unfortunate circumstances, lead to the loss of the crop. However, it is not always easy to create an ideal environment for the crop.  This technology offer is a control system that allows the facility manager to align optimal crop conditions with the equipment settings in their facility, minimising the drift between settings and site-level crop conditions. The control system can also be used to compute the correlation between data across crop production, environment, and business performance. The control system can be customised further by adding other sensors for better accuracy of control.  The technology owner is keen to do R&D collaboration and licensing with innovative industrial automation companies specialising in product development of sensor networks and high-data throughput IoT gateways.   
Microcapsule-Based Self-Healing Smart Coating for Corrosion Protection
Anti-corrosion coatings have attracted tremendous attention due to their significant safety, financial, and environmental impacts. However, the protective coatings are highly susceptible to damage during transport, installation, and service. The detection of initial micro-cracks is very difficult, but the propagation of corrosion can be quite fast. Therefore, smart coating with self-healing function is a promising route to address the above challenges. The technology owner has developed a polymer-based hollow microcapsule that can release the active ingredients in response to external stimuli. Microcapsules encapsulated with corrosion inhibitors can be added as anti-corrosion additives in coating primer. In the presence of damage, microcapsules get activated and release corrosion inhibitors directly onto the corroding site to prevent the corrosion. This self-healing anti-corrosion coating can effectively extend materials’ lifetimes, reduce maintenance expenses, and enhance public safety. The advanced microcapsule technology can also largely reduce the content of toxic corrosion inhibitors by 90%, enabling an environmentally friendly coating solution. The technology owner is interested in IP licensing and R&D collaboration with industrial partners who are seeking self-healing smart coatings for corrosion protection. The microcapsule technology is also available for co-innovation in other applications, such as anti-fouling and agricultural pest control.
Fast-Curing and Ready-to-Use Glass Fibre Reinforced Polymer (GFRP)
Fibre reinforced polymer (FRP) is widely used for blast protection and structural reinforcement of concrete elements in buildings and infrastructure. However, conventional FRP solutions have limitations due to labour-intensive applications such as on-site preparation and resin mixing, inconsistent quality, long curing time, and low productivity. The technology is a glass fibre reinforced polymer (GFRP) roll pre-saturated with a tacky resin system that can be easily applied to structural elements like “double-sided tape”. The resin-infused GFRP can fully cure in natural light within a few hours, strengthening the structure with only a marginal increase in wall thickness. A fire-retarding version of GFRP is also available. The GFRP solution is fast and efficient with minimal on-site tools and less dependent on workmanship skills. The technology is available for IP licensing and collaboration with industrial partners who are interested in adopting the fast-curing GFRP technology in their products and applications.
Low-Cost Photochemical Coating for Development of Water-Repellent Materials
Water-repellent materials have attracted a lot of attention due to their importance in various applications, such as oil-water separation for oil waste treatment, self-cleaning for corrosion prevention, and microfluidics for electronics and medical devices. Surface modification can be applied to existing materials to introduce water repellency. However, industrial applications of conventional methods are very limited due to low reaction efficiency, high costs of chemical reagents, and instability for recovery/reuse.  To overcome the limitations, the technology owner has developed a new photochemical coating technology using visible light as an excitation source and low-cost chemicals as raw material. The invented coating technology can transform a wide variety of materials into versatile functional materials with excellent water repellency and oil attraction, providing a cost-effective solution to fabricate water-repellent materials. The technology is available for IP licensing and R&D collaboration with industrial partners who are looking for a cost-effective solution for the development of water-repellent and oil-absorbing materials.
Efficient & Sustainable Bioconversion of Food Sidestreams to Edible Protein
One-third of the food produced globally is lost or wasted. At the same time, millions of people are hungry and unable to afford a healthy diet. Having said that, food loss and waste could potentially impose food security and impact the world with nutrition, socioeconomic, and environmental issues.  This technology offer is a process technology that provides an efficient and environmentally friendly approach to utilise agri-food side stream and convert it to a valuable, high protein biomass. The technology develops precision approaches, i.e., the proper treatment methods for food sidestreams, specific separation means for target ingredients, suitable strains for protein production, and optimized operational conditions for the fermentation process. The process also utilises the inexpensive agri-food side stream as the novel feedstock for protein fermentation. The technology is available for R&D collaboration and test bedding, with partners that are interested in valorisation of food sidestreams to value-added edible protein. The technology owner is also keen to license and commercialize this technology.
Upcycling Hair and Feathers into Biodegradable Bioplastics
Keratins are naturally occurring proteins found in hair, feathers, wool and other external protective tissues of animals. They are highly abundant, naturally produced and generally underutilized. At the same time, keratins offer versatile chemical properties that allow interactions with themselves or with other materials to improve behaviour. The technology provider has developed sustainable, biodegradable plastic materials by upcycling keratins derived from hair and feathers. In the preliminary studies, the technology provider has found ways to produce films that have the potential to be used as packaging materials. These films do not disintegrate readily in water, yet they fully degrade in soil within a week. They can be made in combination with other waste-derived biopolymers to improve strength to meet the needs of specific use cases. This technology is available for R&D collaboration, IP licensing, or IP acquisition, with industrial partners who are looking for a green packaging solution and to explore specific-use-case products. The technology provider is also interested to collaborate with the OEM partners having the keratin extraction facility from feathers and hair for the deployment of this technology.
Face Anti-Spoofing Technology
Face anti-spoofing (FAS) has recently drawn increasing demand as one of the critical technologies for reliable and safe authentication systems to prevent fraudulent operations. Traditional FAS approaches become unreliable when more and more realistic presentation techniques emerge.  An artificial object like a photo, video, mask, or other substitute that imitates the unique biological properties of a person is presented to the biometric scanner.  Biological determination technology identifies physical traits as well as social and psychological conditions to determine the authenticity of a unique living person. Liveness detection is defined as biometric detection that can discriminate between the features of live skin and copies of those features in a fraction of a second. However, as every man-made solution can be defeated, efforts to enhance and improve liveness detection always remain a work in progress. This technology offer is an identification method which can prevent spoofing more robustly by providing multiple biological determination processes in an arbitrary order determined by the system. Thus, the probability of correctly guessing a unique pattern for performing biometric determination actions decreases exponentially, preventing the preparation of authentication presentation actions beforehand.