innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Molecular Imprinted Polymers (MIPS) based Fluid Sensors for Contaminants Monitoring
Monitoring of contaminants in fluids often require capital-intensive machinery and sampling comes at a hefty price tag. With the advent of tightening regulations across various industries including environmental and food industries, there is a need for a more cost-effective and efficient method to meet the growing demands and regulatory requirements in the market. Molecular Imprinted Polymers or MIPs are one such sensor technology that can potentially address this challenge. MIPs are synthetic materials that are designed to recognize and selectively bind to specific molecules, similar to the way antibodies recognize and bind to antigens. MIPs can be engineered to bind to a wide range of analytes, including organic and inorganic molecules, peptides, proteins, and even whole cells. The unique feature of MIPs is that they possess high selectivity and sensitivity for the target molecules, making them ideal candidates for designing high-performance sensors. This technology relates to a cost-effective online monitoring system using MIPs technology to detect trace levels of chemical and biological contaminants on-site in the fluid phase with low interference, high accuracy, and sensitivity. The automated real-time monitoring system requires little supervision and can be easily operated. The robust sensor is designed for long-term operation and requires minimum maintenance without compromising the reproducibility and integrity of the data. This technology allows monitoring can be applied in industries such as agriculture, food, chemical processes, environment monitoring and waste management. The technology provider is seeking partners that are interested in co-development, R&D collaborations or licensing.
Self-Cleaning Additive for Paints and Coatings
Green building technologies are of great importance to provide large modern cities with the capability of environmental protection and sustainable development. It is highly desirable to develop a long-lasting, self-cleaning technology for outdoor paints and coatings to keep building surfaces clean. Developed by a local research team, the proposed technology relates to an ultrasonic-assisted, wet chemical method to prepare doped titanium dioxide (TiO2) material as an additive for paints and coatings. This additive brought about the photocatalytic/photo-induced self-cleaning effect on the coating surface, enabling long lasting surface cleanliness thus less maintenance, as well as removal of organic air-borne pollutants such as sulphur dioxide (SO2) and nitrogen oxides (NOx) species through the photo-degradation reactions. Unlike conventional TiO2-based additive which can only be activated by specific band gap of UV light (e.g., 3.2eV, 387 nm), the proposed doped TiO2 additive extends its active spectrum of photocatalytic activity into the visible light range. This greatly improve the self-cleaning effects and surface de-pollution efficiencies. The research team has completed preliminary evaluation using a water-based paint with 1% doped TiO2 additive with one layer topcoat at a rooftop environment, through an 18-month test and obtained satisfactory results in terms of surface cleanliness and durability of the painted surface. The team is seeking partnerships with industry through R&D collaboration, consultancy or licensing of this technology.
Economical and Sustainable Binder for Efficient Stabilisation of Marine Soft Clay
Offshore land reclamation has been an important strategy for Singapore to meet its land needs. However, the ultra-soft soil in the surrounding waters makes land reclamation extremely difficult. Besides, many infrastructure projects (i.e., tunnelling, deep excavation, etc.) are also challenging when encountering soft marine clay due to its poor engineering properties, such as high water content, high compressibility, and low shear strength. Currently, ordinary Portland cement (OPC) is the most common binder used for soft clay stabilisation through deep mixing or jet grouting. However, OPC is not very effective for the stabilisation of marine soft clay with high water content. In addition, the production of OPC leads to negative environmental impacts such as non-renewable resources, high energy consumption, and high carbon emissions. The technology owner has developed a sustainable novel binder, entirely from industrial by-products, that has high stabilisation efficiency for marine soft clay. Using the same binder content, the 28-day strength of the novel binder-stabilised soft clay can be 2–3 times higher than that of the OPC-stabilised clay. In addition, the novel binder has a lower cost and less environmental impact, making it an economical and sustainable alternative to OPC.   This technology is available for R&D collaboration, IP licensing, and test-bedding with industrial partners in the construction and infrastructure sectors.  
Glycemic Index Speed Test for Rapid And Accurate GI Determination in Food Products
This technology is a rapid method to determine the Glycaemic Index (GI) in food product. The GI is a way of measuring how fast carbohydrate is absorbed into body and how that affects blood glucose levels. The technology is an in-vitro methodology / workflow that combines sample processing, enzymatic digestion and endpoint data analysis based in a laboratory. The Health Promotion Board in Singapore (HPB) has been actively engaging the public with its “Healthier Choice Symbol” (HCS) programme to encourage adoption of healthier diet options. For some category such as cereals and convenience meals, the GI logo is integrated with HCS. We envisioned more integration will take place to better serve consumers and health care providers in diet management. Currently, most food labels lack GI ratings, which limits information to consumers. The current “gold standard” of measuring GI involves measurement of blood glucose in human volunteers and this in vivo method suffers from variability issues in its GI measurements, along with significant lead time and cost of this method. The technology offered provides a solution for faster, cost-effective, and versatile GI screening of food, encouraging food manufacturing industry to adopt GI measurements as part of their product development and labelling GI on packaging, thus benefiting the public. The technology is available for IP licensing and R&D collaboration with industrial partners who are keen to adopt the solution.
Low-energy Carbon Dioxide-free Hydrogen Production
The potential of green hydrogen to plug the intermittency of solar and wind whilst burning like natural gas and serving as feedstock in industrial chemical processes has attracted the interest of industry, governments and investors. From oil and gas players, utilities, industries from steel to fertilisers and more, green hydrogen is regarded as the best bet for harmonising the intermittency of renewables.   Green hydrogen is produced through water electrolysis, a process that separates water into hydrogen and oxygen, using electricity generated from renewable sources. Today, it accounts for just 0.1% of global hydrogen production according to the World Economic Forum. The main disadvantage of green hydrogen production via water electrolysis is (1) its high energy consumption of more than 50 kWh per kg and the need for large land areas and (2) the competition of usage for water it creates.   The proposed hydrogen production technology is based on the decomposition of methane (CH4) molecule in oxygen-free environment by low energy microwave plasma. Unlike electrolysis, this process does not produce CO2 as it decomposes CH4 directly into gaseous hydrogen and solid carbon, both are industrially valuable products. Compared to water electrolysis, this process saves up to 5 times the energy required to produce hydrogen from methane, at competitive costs. The process can be installed on-site, at the end of the gas infrastructure, reducing the need to invest in a new H2 infrastructure. The fact that, coupled with biomethane, the technology is CO2 negative, representing an indirect air capture solution is another major advantage.   The technology owner is seeking OEM partners in Singapore (1) to co-develop complete solutions integrating the proposed technology for specific applications or (2) integrate the technology into industrial demonstration sites.
Low-Energy HVAC System for Indoor farming and Greenhouses
The sustainable urban farming concept is growing rapidly, and Singapore is progressing well towards it.  The heating, ventilation, and air conditioning (HVAC) system accounts for more than 50% of the total energy used in an indoor agricultural farm, according to data on energy use. Technological advancements can help to address energy reduction and improve the productivity of indoor farms. Low energy-based concepts can be implemented by mainstream farm owners in Singapore to increase farm productivity and serve the increasing market demands directly.  This technology offer is a Low-Energy (Low-E) HVAC system for farming. It can cool, heat, dehumidify and ventilate any indoor space using up to 100% outdoor air exchange. It is able to achieve and maintain the optimum cooling, drying conditions, and sufficient level of carbon dioxide that are needed for farming with lower energy consumption. The operating cost of the Low-E HVAC fitted grow room is 35% to 37% lower than the conventional HVAC system for the same application. The technology owner is keen to do R&D collaboration and test-bedding with potential indoor agricultural farm owners.   
Ultra-Thin, Stretchable and Sensitive Fabric Sensor for Sports Monitoring
The rise in health consciousness has accelerated the development of sports wearable devices. Currently, most common sports wearables are physiological indicators for monitoring vital signs (e.g., heart rate, blood pressure, SpO2, etc.) and metabolites (e.g., glucose, pH, lactic acid, etc.). However, these devices cannot quantitatively analyse the force-generating process. The existing kinematical indicators monitoring posture and motion also have limitations, such as poor wearing comfort, low sensitivity, and weak capacity for real-time data analysis. The technology is an ultra-thin microfiber strain sensor that has superior elasticity, durability, and sensitivity. Using this proprietary technology, the technology owner has developed a comfortable fabric wearable to monitor muscle activities during sports and rehabilitation. By incorporating machine learning algorithms, more than 15 data metrics are being analysed in real-time to accurately characterise sports performance, optimise training standards, and prevent fatigue or injury. This technology is available for licensing and R&D collaborations with partners in the sports, fitness, healthcare, and rehabilitation areas, e.g., sportswear and smart wearable companies, gyms, healthcare providers, sports training institutes, etc.
Eco-Friendly and Low-Cost Liquid-Activated Primary Batteries
Recently, the rising adoption of Internet of Things (IoT) devices and portable electronics has made electronic waste (e-waste) pollution worse, especially when small and low-power IoT devices are single-use only. As such, low-cost and environmentally friendly power sources are in high demand. The technology owner has developed an eco-friendly liquid-activated primary battery for single-use and disposable electronic devices. The battery can be activated by any aqueous liquid and is highly customisable to specific requirements (i.e., shape, size, voltage, power) of each application. This thin and flexible battery can be easily integrated into IoT devices, smart sensors, and medical devices, providing a sustainable energy solution for low-power and single-use applications. The technology owner is keen to do R&D collaboration and IP licensing to industrial partners who intend to use liquid-activated batteries to power the devices.
Sensing Technology for Detecting Muscle Training Effectiveness
Strength training is beneficial for a person's overall health and wellness. There is increasing demand for strength training used in rehabilitation aimed at restoring the day-to-day functionality of elderly persons. Currently, continual adjustment and improvement to the strength training and rehabilitation plan is carried out using feedback based on visual analysis. This maybe time consuming, and has to be based on the experience of the rehabilitation therapist.  This technology offer is a near-infrared spectroscopy (NIRS) technique used to detect the effectiveness of strength training. By using the technology, muscle oxygen consumption information can be acquired and mapped as a two-dimensional distribution without the need of direct skin contact. As such, it is possible to accurately evaluate the effectiveness of strength training on a site-by-site basis. In-vivo changes in oxygen concentration in muscles during strength training can be determined by detecting changes in oxyhemoglobin and deoxyhemoglobin. In this technology offer, these changes are presented by variations in amplitudes of refracted content of an incidental NIR light directed into the skin. This method of analysing the changes in intramuscular blood flow is effective for understanding the muscle condition during strength training, and hence can be used to determine the effectiveness of the training.  The technology owner is keen to out-license the technology to application developers from the physical training and rehabilitation industry.