innovation marketplace


Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Phytonutrient-based Remedial Fluid for the Management of Hypertrophic and Keloid Scars
After a skin injury or surgery, a scar may form as the wound heals. In this body's repair mechanism, the myofibroblast cells produce new collagens and they form an extracellular matrix (ECM) to repair a wound. Over time, most scars become flat and pale. However, in some abnormal cases, the body produces excessive collagens. The excessive ECM formation and deposition of these scar tissue will result in raised scars such as hypertrophic scar and keloid scar. These raised scars may leave lifelong marks on the skin. Although the raised scars are not dangerous or life-threatening, they create aesthetic concern, restrict physical movement and may also lead to itching, tenderness, pain or even depression and anxiety. The currently available scar removal products such as silicon patches and topical products may cause skin irritation, which has led researchers to look for safer and more effective solutions. The present technology is a series of phytonutrient-based remedial fluids, which can be used as a general topical agent or complemented with a nano sprayer for the management of raised scars. The product developed from this technology is a safe, non-invasive and convenient approach to suppress hypertrophic and keloid scars. The technology provider is looking for collaboration opportunities to co-develop skincare products incorporated with this series of plant-based remedial fluids for scar management, collaborators for conducting clinical studies to evaluate effects of the current prototypes as well as other partnership mode including IP licensing. 
Sub-Skin and Gut Microbiome Health Analysis by Smartphone App
Conventional diagnostic imaging of the skin involves the use of dermatoscopes. Dermatoscopes use skin surface microscopy to examine dermal and sub-dermal tissues to diagnose skin problems. However, these devices can be costly and provide a limited view of the immediate skin surface. This limitation meant that dermatoscopes have to be used in direct contact with the patient's skin. Because of this, they can only be used to image patients in the same physical location as the clinician conducting the examination. The overall result is that only a tiny portion of the global dermatology patient-base can be reached cost-effectively and efficiently. Telemedicine and telehealth network operations are rapidly developing ways to address patients broadly and at lower costs for them and their care providers. Yet, such tools neither deliver desmatoscope-like functionality nor improved it in way that it allows patients' skins to be examined and analysed during an online medical consultation with a general practitioner. In order to facilitate remote skin disease diagnosis, the use of software is required to acquire and share images in real-time and ideally, by the patients themselves. This software enables patients to take their medical sub-skin images with their mobile, tablet or laptop cameras, and securely share it with doctors. Crucially, dermatoscopy images can also be used with the technology to improve diagnostic accuracy. This technology is intended to position itself as a technology which when scaled-up, could allow for products that can enable optical biopsy and phototherapy. 
Real Time, All-day, Stress Monitoring System Using Data Science
There are 30,000 occupational drivers in Singapore, out of which 13,500 are 45 years old and above. The risk of acquiring cardiovascular disease increases with age and is potentially exacerbated by low physical activity and high emotional stress levels, which are two typical characteristics of occupational drivers arising from their work environment. Low level of physical activity and high stress levels have been shown to have significant relationship with heart rate variability, one of the indicators of cardiovascular disease. This technology is developed to help drivers to monitor their stress level, provide them with instantaneous feedback and the necessary alerts for a timely intervention. This technology offer presents a cross-platform AI system that estimates the stress levels continuously in real time, and can be easily integrated with commercially available photoplethysmography (PPG) wearables, e.g., a PPG wristwatch. In addition, this technology can be adapted for the monitoring of workplace stress with the aim of improving overall mental well-being.
Improving Explainable Artificial Intelligence For Degraded Images
One use of AI, including deep learning, is in prediction tasks, such as image scene understanding and medical image diagnosis. As deep learning models are complex, heatmaps are often used to help explain the AI’s prediction by highlighting pixels that were salient to the prediction. While existing heatmaps are effective on clean images, real-world images are frequently degraded or ‘biased’-such as camera blur or colour distortion under low light. Images may also be deliberately blurred for privacy reasons. As the level of image clarity decreases, the performance of the heatmaps decreases. These heatmap explanations of degraded images therefore deviate from both reality and user expectations.  This novel technology-Debiased-CAM-describes a method of training a convolutional neural network (CNN) to produce accurate and relatable heatmaps for degraded images. By pinpointing relevant targets on the images that align with user expectations, Debiased-CAMs increase transparency and user trust in the AI’s predictions.
Enabling Interpretable Sorting Of Items By Multiple Attributes
Lists are an indispensable part of the online experience, often used to show many results, such as products, web pages, and food dishes. These items can be neatly sorted by a desired attribute like price, relevance, or healthiness. Listed items often have multiple attributes. However, instead of being able to sort multiple attributes simultaneously, consumers are currently limited to sorting only one attribute at a time. This makes searching for the desired item tedious and confusing. Imma Sort supports interpretable and multi-attribute sorting. Sorting for two or more attributes is possible. In contrast to existing search technology, Imma Sort trades off the smoothness of the sorted trend for the main attribute to increase ease of prediction for other attributes, by sorting them more approximately. Results for specific attributes can be made smoother by setting higher importance weights.
Enhancing Construction Safety and Productivity with Video Analytics
Current methods of monitoring construction safety and productivity are tedious, costly and prone to human errors. Resulting in operations being non-compliant, dangerous and inefficient which leads to project delays, cost overruns and even reputational damage. This technology offers an enhanced safety and productivity tracking solution in the construction industry by leveraging on video analytics to detect safety hazards and high-risk scenarios as well as productivity insights. It provides actionable insights in the form of alerts, charts and reports to enable safety officers and project managers to make better-informed decisions for their operations.
Bone-like 3D Printed Filaments For Surgical Models Printing
Cadaveric bones are used to carry out medical training for surgeons and trainees. However, such bones are limited in supply, difficult to store, inconsistent in terms of quality and costly to use for repeated training. As such, it is necessary to create an alternative to cadaveric bones that is equally realistic while being more cost effective and easier to obtain. This technology can resolve the limitations of cadaveric bones by offering the formulation and processing method to produce a Fused Deposition Modelling (FDM) system-agnostic bone-like 3D printing filaments for surgical models printing. Printed anatomical bone models developed from this technology will have the look and feel of the real bone. The technology presents an affordable and readily available alternative that minimises the demand for cadaveric bones while still providing realistic training to medical professionals. The technology owner is seeking for collaborations with companies interested to scale-up the manufacture of the filaments and/or licensing of the technology.  
Wavelength-selective Solar Photovoltaic System (WSPV) For Urban Rooftop Farming
This technology offer helps to address the problems of global warming, food security crisis and energy crisis. With the increase in human population and rapid urbanisation, the change in weather patterns and increase in food demand has been inevitable. One of the major concerns faced in Singapore, due to global warming, is the urban heat island effect. This occurs when urban areas in cities have a higher air, surface and soil temperature than rural areas. Initiatives for high-rise greenery has been put in place to help solve the problem. However, there has been problems with limited space and high maintenance cost for these greeneries. Rooftop hydroponics farming is a possible solution to offset the running costs of rooftop greeneries or even generate profits for rooftop greeneries as it produces fresh produce, while simultaneously reducing the urban heat island effect. The reduction in urban heat island is due to a combination of green and blue body acting as a thermal buffer and contributing to the building sustainability (due to reducing in cooling costs). This initiative addresses the constraints of limited land, as solar energy generators require large areas for photovoltaic panels to be laid. This technology offer aims to provide an integrated solution to this economic challenge for environmentally sustainable urban planning. This Technology Offer is a luminescent solar concentrator that enables both power generation by photovoltaic modules, as well as efficient urban rooftop farming.
Decentralized IoT System for Urban Farming
This Technology Offer is an Internet of Things ( IoT) based platform designed to assist the modern-day farmers in monitoring the entire farm seamlessly. It can be customized to suit each farm depending on the type of sensors, machine vision camera, cloud storage, etc., and is equipped with detailed data tracking and analytics to provide the most accurate growth process from start to finish. The software architecture used in this technology offer addresses a decentralized framework to provide the ability to exchange data between IoT devices autonomously without any centralized server. In recent years, the development of IoT applications has become increasingly complex. Thus, this technology addresses this problem by providing the ability to simplify the streaming of data to the IoT platforms over the web. This design can be customized for other applications.