innovation marketplace


Discover new technologies by our partners

TechInnovation 2023 showcases more than 100 latest technologies and innovations in sustainability, health and well-being and AI in healthcare from our partners in Hong Kong SAR, Korea, Japan, Singapore, Slovakia, and Thailand. Enterprises interested in these technology offers can register at to meet these technology providers and arrange for your 1-1 business meeting.

Fully Bio-based, Biodegradable and Compostable Bioplastics
The use of bioplastics has grown rapidly in recent years as consumers and businesses become more aware of the environmental benefits of these materials. However, there are still some challenges that are inherent to bioplastics such as high costs in comparison to fossil-based plastics and that not all bioplastics are derived from bio-based sources, biodegradable or compostable. These materials also face processing limitations and lower mechanical properties which often results in the combination of fossil-based polymers being added to improve these properties. This technology aims to address these factors to increase the adoption of bioplastics in more applications. The technology is a new bioplastic material that is fully bio-based and compostable. Based on a reactive processing technology combining polyhydroxyalkanoates (PHAs) with other biopolymers and bio-based polymers, the resultant blend provides unique properties such as biodegradability (soil or water) and compostability (industrial and home). The material blends can be designed for processing using standard plastic processing technologies and modified for a wide range of mechanical properties. The technology owner is interested in co-development opportunities with Singapore plastic processing companies looking to develop new applications with bioplastics.
AI Platform for Auto Defect Classification, Equipment Automation, and Root Cause Mapping
In precision manufacturing, the ability to maintain optimum efficiency and accuracy is of critical importance. This AI Platform addresses these challenges by utilizing proprietary self-improving AI models for Automatic Defect Classification (ADC). This innovative solution incorporates AI Equipment Automation and Root Cause Mapping and provides a comprehensive system that significantly enhances production efficiency. The system seamlessly integrates Equipment Risk Analysis into existing alert mechanisms thus reducing downtime and increasing yield. At its core, it operates as a robust AI platform, featuring a user-centric interface for Machine Learning Operations (MLOps). This promotes recipe-free inspection while maintaining compatibility with a broad range of third-party software. The technology is modular and provides smooth productization of multiple AI solutions thereby increasing the effectiveness of defect inspection and analysis, assisting in equipment error recovery, and providing insights for process optimization. The technology offers an attractive solution for manufacturers across different industries interested in increasing their production efficiency and improving product quality.
Upcycling of Egg White Waste from Salted Egg Yolk Production
Egg white is a well-known super-food as an absolute protein with a complete essential amino acid profile, easily digestible, and no cholesterol. While salted egg yolks are a common ingredient in many traditional Asian dishes, the egg white is discarded as it has limited applications due to its high salt content. This technology valorizes the salted egg white waste from the production of salted egg yolks into a tofu-like form that has many culinary applications. This is done using a patent-pending technique that is developed for desalination and reformation of egg white protein.
Continuous Skin-based Sweat Sensor for Rapid Biomarker Detection
Biomarkers are biomolecules and/or physical characteristics found in the body that gives a clear picture of a person’s health and fitness. Currently, the golden standard of biomarker testing is through blood tests. However, this method is invasive as it involves drawing blood with a needle. Additionally, blood tests are neither real-time nor continuous which means there is significant delay between testing and receiving results. Such problems can be solved through this invention as our method involves sensing biomarkers within sweat through a skin patch, eschewing the need for needles. Furthermore, the biomarker data can be is instantly transmitted to a smartphone application which allows users to continuously monitor their data in a convenient manner.  We believe this technology would be relevant in numerous industries such as sports fitness, beauty, and medical diagnostics; thus, attracting sizable demand for it where there is an unmet need for convienient, accurate and  real time detection of of accurate biomarkers.
Injection-free Cellular Implant for Diabetes Management
In 2022, about 83 million patients suffer from insulin-dependent diabetes worldwide. From 2021 to 2045, this number is projected to increase by 46% globally. Despite the availability of approved insulin therapy as the standard of care, up to a quarter of these patients still suffer from poor blood glucose control, which can lead to a fatal drop in blood glucose levels. The team has developed a cell-encapsulating macro-device as an implant to reduce the risk of fatal drop in blood sugar of insulin-dependent diabetic patients. This patent-pending, injection-free cellular implant can  effectively manage insulin-dependent diabetes by enabling enhanced survival of therapeutic insulin-secreting cells. After a simple under-skin insertion of the macro-devicethe cells in this implant can sense the blood glucose level of a diabetic patient and secrete insulin to continuously provide injection-free, precise glucose control. The device also protects the insulin secreting therapeutic cells by encapsulating them in a hydrogel to shield them from immune attacks andalleviate the patient from the need for  immunosuppression . This technology could offer a safer alternative treatment for these insulin-dependent patients who experience poor blood glucose control with conventional insulin therapy.
The Next-gen Histological Imaging Tool with AI
Histopathology is a cornerstone of modern medicine, providing crucial information that enables doctors to formulate optimal treatment strategies before, during, and after surgeries. However, current methods for obtaining histological images grapple with a compromise between speed and accuracy and suffer from organ-dependent inconsistencies. Addressing these challenges, our technology was developed as a versatile solution to cater to a wide array of clinical scenarios. It sets a new benchmark for medical standards with its rapid, precise, and label-free on-the-spot imaging capability. Computation High-throughput Autofluorescence Microscopy by Pattern Illumination is a one-of-a-kind patented solution n that can detect and provide instant information about cancer status before, during, and after surgeries. This technology lets surgeons place fresh tissue samples taken directly from the patient into the microscope and receive high-resolution and virtually stained histological images in just three minutes. The primary adopters of this technology are expected to be healthcare organizations, hospitals, and research institutions, or any entity involved in histopathology, cancer diagnosis, and surgery. This technology fills a crucial void in the market by providing swift, high-resolution, label-free imaging of thick tissue samples, an achievement previously unattainable. Consequently, this technology not only accelerates the diagnostic process but also enhances its precision, revolutionizing the field of histopathology
Assisted Rehabilitation Using Soft Robotics
Patients who have stroke, brain injuries, cerebral palsy, arthritis or suffer from other neurological disorders often experience motor impairments; patients with delayed or lack of rehabilitation suffer from more severe physical sequelae, such as, spasticity and muscle atrophy, which decreases their level of independence It has been reported by World Health Organisation, that the need for rehabilitation continues to grow worldwide, especially in low- and middle income countries. The demand for rehabilitation services already exceeds availability, leaving a large unmet need. Longer life expectancies and increasing survival rates for those with severe disability, coupled with the rising prevalence of chronic diseases means that globally there will be an increase in the health burden associated with limitations in functioning. For both the patients and therapists, there is a need for efficient models of rehabilitation care are needed. This invention is of a robotic manipulator that can assist or be programmed to move or mobilize patients’ limbs or joints repetitively during rehabilitation or to perform daily tasks, for e.g., of gripping a cup, bowl or utensil, in a safe, reliable and effective manner. The device can be used in a clinical and/or at-home setting.
Revolutionizing Cell Therapy Cultivation: Next-Generation Feeder-cell Mimicking Platforms for Cell Modulation
Immune cell activation and expansion for cell therapy is a strictly regulated process. It demands costly and labour-intensive optimization of cell culture conditions. Major limitations of these processes are cell quality and results consistency. Large amounts of expenses were spent on culture conditions, cell characterizations and quality control (QC) with differing culture protocols and recipes in growing CAR-T cells. This technology has established a standardized platform through its feeder-cell mimicking feature that could screen culture conditions for diverse cell types and patient source more rapidly at lower costs. Both feeder-cell based system and feeder-free system poses respective challenges of contamination or insufficient growth signals. To address this gap, a modular, all-signals-in-one microbead-based platform has been developed for the next-generation cell therapy R&D and translation. In this delivery platform design, the modular feature allows rapid ‘plug-and-use’ of multiple surface and soluble signals to grow T-cells ex vivo without the need for extensive setup and integration of culture protocols. This platform aims to provide a seamless and straightforward cell culture experience for the industrial and academic research users to discover new types and applications of immune cell therapy. Additionally, the all-signals-in-one synthetic platform mimics the natural antigen presenting cells to activate and expand T-cells on dish, allowing cell manufacturers to ‘mix-and-grow’ immune cells with reduced effort or technical expertise. This aims to improve the cost-effectiveness and scalability of cell therapy manufacturing. The technology provider is seeking collaborations with cell therapy CDMOs/CMOs in licensing and various R&D developments.
Wearable Sensing and Haptics Technology for Virtual Reality (VR)
This technology portfolio covers wearable sensing and haptics for Virtual Reality (VR). The wearable sensors can provide gesture-based control in VR without the need for cameras, providing interactive control for VR for lower end headset. The sensor use electronic textiles and a patented sensing scheme that requires no additional electronics except a microcontroller. They present ultralow latency (<1ms), can distinguish between wearer and non-wearer and have exceptional noise rejection. The haptics technology allows for simulation of resistance and micro sensations on the fingers and palm. This is crucial for applications like surgical training, as surgeons routinely rely on their sense of touch in real world scenarios. The jamming technology uses textile-based actuators and pneumatics, making it the lightest wearable technology for haptics.