Sustainability Hub

Agrifood

With only 1% of land available for food production, Singapore relies on imports for 90% of its food supply. To meet the goal of producing 30% of the nation's nutritional needs locally by 2030, Singapore enterprises must embrace agrifood tech innovation. Technologies that enhance agri-inputs and resource efficiency for highly productive urban farming systems in agriculture and aquaculture, together with innovations in alternative proteins, food side stream valorisation and solutions to enhance food safety can pave the way for sustainable and resilient food systems, contributing to long-term food security for Singapore. 

Through the integration of agrifood tech innovation in Singapore, businesses can optimise processes and reduce waste, driving the shift towards a more sustainable food ecosystem. By focusing on food waste valorisation and other transformative agrifood technologies, Singapore can unlock new opportunities in resource efficiency and food production.

Discover IPI’s curated list of agrifood tech solutions, including food waste valorisation, as we aim to strengthen Singapore's food security, ensuring resilience in the food supply chain while promoting sustainable and profitable agricultural practices.  

Sustainable Clay: Integration of Food Waste With Clay
Clay is a naturally occurring material composed mainly of fine-grained minerals, demonstrating plasticity through a range of water content. Given the low recycling rate of food waste in Singapore (18%), incorporating food waste in existing clay products presents an opportunity to conserve natural resources and develop more sustainable clay materials. This technology involves the development of food waste-incorporated clay, which permits safe biodegradation over time without the use of kiln firing. A selection of food waste is carefully treated and blended into the clay to create sustainable clay with high waste content, high nutrients, great workability, and appropriate shelf-life. Each type of food waste contributes different physical and chemical properties to the clay, affecting its biodegradability and workability. Apart from food waste, a naturally occurring binder is also added to ensure overall biodegradability. By adjusting the formulation of the food waste-incorporated clay, its appearance and other functional properties (such as strength and workability) can be made comparable to conventional clay, with the added benefit of nutrient (calcium, potassium, nitrogen, carbon) leaching capabilities. This creates sustainable, biodegradable clay for various built environment applications. The technology owner is interested in working with companies seeking sustainable clay materials on joint R&D projects, out-licensing and test bedding opportunities .
Software and AI To Digitize and Automate Seafood Manufacturing and Supply Chains
A smart manufacturing and supply chain platform has been developed, enabling seafood processors to automate and digitize their production, quality control, costing, traceability, cold chain, and inventory workflows using tablet computers, sensors, and IoT devices in real-time on the factory floor. This software is a “low-code” web app that can be easily configured for both simple and complex workflows, suitable for small or large production facilities, and adaptable to the wide variety of seafood processes, including live shellfish, fresh and frozen fish, smokehouses, and industrial-scale canneries. The workflow platform includes advanced modules for IoT hardware integration, artificial intelligence, advanced analytics and reporting, a wireless cold-chain sensor, a consumer tracing app, and computer vision for automated inspection. Generative AI is also integrated into the platform, allowing users to “talk to their data” and upload documents to train the large language model. The platform provides value to customers in three core areas: First, the software and AI reduce labor costs by making data collection, management, and reporting more efficient. Second, the software enables real-time process and inventory control, replacing outdated analog paper record-keeping. Third, the software reduces data errors and strengthens traceability, improving compliance with third-party certifications and food safety regulations. Additionally, it includes AI algorithms for yield prediction, anomaly detection, demand forecasting, and drain weight prediction in the fish canning sector.
Precision Delivery Technology Enhancing Biological Pesticide Efficacy
With mounting concerns regarding the environmental and health impacts of conventional chemical pesticides, there is a noticeable shift towards biological alternatives. This trend is fueled by a global demand for sustainable agricultural practices and safer, more environmentally-friendly produce. However, a significant challenge persists: the comparatively lower efficacy of biological pesticides. This technology addresses the challenge of low efficacy in biological pesticides, often caused by environmental factors such as heat, UV exposure, and runoffs, especially prevalent in tropical regions. It utilises plant-derived, biodegradable materials to encapsulate the biological pesticides, protecting them from environmental factors, thereby extending their residual treatment effect and reducing usage volumes and re-application frequencies. 
Capitalising On Spent Coffee Grounds (SCG)
Only 20% of actual coffee is extracted from beans to produce coffee in its beverage form, leaving the remaining 80% (six million tons annually) deemed as spent coffee grounds (SCG) to be disposed or used in landfills or as non-food product components to make fertilisers, furniture, deodorisers or skin care products. A technology was created to counteract SCG wastage and valorise it for human consumption. This particular invention comprises of methodologies to create two types of ingredients using leftover SCG - oil-grind and water-grind processed SCG. A simple, reproducible method of conching is employed to convert leftover SCG into smooth pastes, where specific conching parameters help refine the SCG to an acceptable particle size, eliminating grittiness in numerous valorised products similar to SCG. The product utilises common ingredients like oil and water to conche SCG with improved taste and textural properties. The shelf stability and nutritional composition (including caffeine) of the ingredients were also validated to ensure the food possessed good sensorial properties and are scale up ready. This technology increases SCG’s potential use as a versatile ingredient in different food applications. The technology provider is seeking off-takers from food manufacturers, food services industry, companies interested to valorise side streams to turn SCG into edible compounds.
DNA Test Kit for On-site Diagnostics of Tropical Crop Diseases
Fast crop disease management is important to ensure sustainable production. Many tropical crops suffer from infectious diseases that spread and kill plantations. Previously, new land had to be allocated to replant crops in disease-free areas. This is now more challenging because land conversion implies deforestation. Thus, one way to improve the metrics of both production and sustainability is by testing for infection before moving the non-infectious material (i.e. in nurseries). However, as PCR testing in tropical countries is more challenging due to logistics and other factors, testing on-site would be a preferred option. This technology is a unique, portable, self-administered DNA detection kit to be used directly on-site to test for the DNA of the pathogen (virus, fungus etc.). Developed in Switzerland, the technology has already shown one use case for cocoa testing in West Africa and is shipped in the country without a cold chain.
Food Shelf Life Extension Using Magnetic Interference Technology
One-fifth of all local and imported food in Singapore and about 15% of all food globally is spoiled during the supply chain due to inadequate food transport facilities. To overcome this, the startup offers a patented technology in the form of a hardware device that emits a magnetic interference field. It can be used throughout the supply chain starting immediately after harvest and all the way to storage and display. In particular, this technology has great potential to be applied during the food transportation when the chance of spoilage is highest due to reasons such as overripening caused by supply chain delays. The startup is looking to collaborate with food logistics and storage companies, as well as retailers, to integrate their solution.