Tech Bundle

Singapore Battery Consortium

With rapid research advancements in battery technologies, lithium-ion batteries have become an indispensable part of modern life: they provide a reliable power source for portable electronic devices such as mobile phones and laptops, and have led to transformative technologies like electric vehicles. Continued research and development has yielded breakthroughs in new battery materials and chemistries with enhanced performance and lifespan, as well as system level improvements. In recent years, much attention is also given to repurposing batteries for new applications and recycling of end-of-life batteries. The Singapore Battery Consortium Tech Bundle features a curated list of technologies for enterprises to discover new collaboration and co-creation opportunities.

Ultrathin and Flexible Printed Batteries for Smart Labels, IoT and Medical Wearables
The technology offer presents ultrathin, flexible, safe and high-performance zinc batteries. The patented High Conductivity Polymer Electrolyte (HCPE) is stable, rechargeable, printable to a solid-state. Therefore, it does not need a sealed container. Furthermore, the HCPE allows for low internal resistance, and hence maximizes power. As the chemistry is based on zinc rather than lithium, it avoids the safety issues that have plagued many lithium technologies, such as soil and air contamination when extracting lithium. The expensive casing could be another issue for lithium technology. Since the batteries are printed, they can be produced in most shape and size to meet specific project design needs. This technology offer can provide a safe, disposable and label-like power source for logistics smart tags, data loggers and medical patches. It is making inroads to becoming a de facto green battery chemistry alternative as more product designers and customers demand safer and more sustainable electronic products.
Scalable, Cost-effective Calorimeter for Thermal Monitoring of Batteries
Battery cells must be tested for performance and operational reliability from the design phase to the production process, to safeguard its safety, reliability and cost. As batteries are prone to temperature-related issues, like overheating and overcharging, there can be extreme spikes in temperature known as ‘thermal runaway’. In order to evaluate the thermal performance of the battery, calorimetric testing can produce data that indicates defects at an early stage and thus help to predict a ‘thermal runaway’ at a later stage.  A German research institute has developed a modular, scalable calorimeter to measure the thermal data of batteries of diverse cell sizes. The scalable system is suitable for applications in thermal monitoring from new module designs to new battery materials and quality assurance. The modules are currently in use at the research institute and this calorimeter has German utility model protection. The research institute is searching for partners for the joint further development in research cooperation agreements or for partners interested in a direct license.
Battery Management System to Refurbish Lithium-ion Batteries
Recycling or refurbishing of lithium-ion batteries is crucial in tackling the challenges of climate change and air pollution. While there is the demand for batteries to have more capacity and longer life cycles, lots of time and investment are also required to dismantle and recycle batteries. Precious metal, such as Lithium, needs to be saved while batteries need to be renewable as well. A start-up company has developed a Battery Management System (BMS) circuit, software and process to refurbish small lithium-ion batteries used in wheelchairs, laptops, tablets, drones and more. The technology enables the consumer to achieve significant cost savings and environmental benefits compared to buying new batteries or using other battery recycling methods, with a wide support for different types of batteries from various battery manufacturers.  The company is seeking potential partners in Singapore to collaborate through a licensing agreement, whereby the know-how and the process of battery refurbishing will be transferred to the partner.
Cost-Effective Energy Storage Solution for Renewable Energy Application
Renewable energy sources are intermittent, this means that electricity generation using these sources fluctuates. To supply the world with 100% renewable energy, energy storage system is indispensable. Conventional battery technologies such as lithium-ion or lead-acid batteries uses toxic materials, relatively expensive and unsafe. This invention provides a cost-effective and scalable flow battery that can store excess renewable energy using water (H2O) and table-salt (NaCl) as the storage medium, which is safer than lithium-ion batteries as these materials are non-flammable. These materials are also abundantly available and cost-effective. The flow battery is highly scalable. The power (in kW) and the energy storage capacity (in kWh) are decoupled unlike lithium-ion or lead acid batteries. This means that one can design the flow battery with a relatively small power but high energy storage capacity – enough to store energy for days to weeks. The flow battery is simple to manufacture and easy to implement. It requires a stack of ion-exchange and bipolar membranes to perform charging and discharging and water storage tanks. The technology provider is keen to work with potential technology adopters through technical collaboration and licensing agreement to deploy the technology in Asia.
Standalone Alternating Current (AC) Batteries and Cockcroft-Walton Multiplier
The technology owner had developed a patented standalone AC battery with a proprietary electrode design that has both the characteristics of anode and cathode. This enables the battery to generate AC power (square / pulsed wave form) from a single battery and a single switch. In a typical direct current (DC) to AC power conversion configuration used for brushless DC motors (BLDC) in drones and electric vehicles – multiple DC batteries, switches, complex battery management system and inverter circuit are needed to generate 3-phase AC to power a BLDC. The novel AC battery uses a simpler circuit design that minimises battery management system, converters and inverters. The use of the third electrode enables the voltage within the battery cells to be divided by half, e.g. while there is 4V between anode and cathode within the conventional Li-ion battery, the electrode can divide the voltage into 2V each, leading to safer operations and longer cycle life. The technology owner is looking at integrating the Cockcroft-Walton Multiplier (CWM), an established circuit that generates high DC voltage from an AC input as part of the AC battery system. The technology owner aims to boost the voltage, e.g. from 1.85V to 20V for industrial drones with an additional cost of USD200, while achieving 30% higher battery capacity with the AC battery and CWM combination. The technology owner had already developed several prototypes including a 100mA pouch cell. They are currently working on optimising the thickness of the electrode and preparing for a pilot test in industrial drones. The technology owner is seeking technical collaboration to scale up the AC battery prototype, develop integrated AC battery with CWM, conduct pilot test in drones, e-bikes, or e-wheelchair and eventually to license their technology to battery or battery parts manufacturers.
High Power Batteries and Thermal Management Solution
The proposed heat management technology focuses on high power applications (above 2C) that result in battery overheating, which can cause significant reduction in lifetime, performance and safety hazards. Thermal Management System (TMS) - During normal operation of batteries, the battery cells emit heat, which could cause the temperature of the battery pack to rise drastically. Without a TMS in place, heat would be trapped in the battery pack and could cause cell-degradation, leading to shortened lifetime, decreased performance and fire hazard. The proposed thermal management solution overcomes battery-overheating issue. The solution consists of liquid cooling and a proprietary material that could effectively prevent fire propagation, extend lifetime and increase performance of the battery.  Working Mechanism of TMS - The TMS works by dissipating heat away from the battery cells. The proprietary thermal material is dielectric and can be poured directly into any battery pack. As the material flows into the pack, the material envelops the cells and serves as a protective layer between the cells. The material solidifies when it cools. During battery operation, the material absorbs heat emitted by the battery cells. Heat is then dissipated from the material via a liquid cooling circuit integrated in the TMS. The technology provider is actively seeking potential partnerships and technology licensing for its (i) proprietary TMS and (ii) standard battery module that consist of the TMS. The technology provider is also open to working with potential partners to fast-track their Second Generation phase change material (PCM) development.  
Process for Rejuvenation of Spent Lithium-ion Battery Cathodes
Lithium-ion batteries (LIBs) have been the preferred portable energy source in recent decades. The tremendous growth in the use of LIBs has resulted in a great number of spent LIBs. Disposal of these spent LIBs will cause serious environmental problems due to hazardous components such as heavy metals and electrolytes. Materials contained in the spent LIBs are valuable resources and could be recycled by proper technologies. Current methods are not suitable for LIB recycling due to slow process, low purity of the products (low profits) and the use of non-environmental friendly leaching reagents. The proposed LIB recycling technology is based on a co-precipitation process and control system which can process various types of spent LIBs including lithium cobalt oxide (LCO), lithium manganese oxide (LMO), lithium nickel manganese cobalt oxide (NMC) and lithium nickel cobalt aluminium oxide (NCA). The co-precipitation method allows the recovery of cathode metal salts in their original form, without separation of the metal elements. The obtained metal salts could then serve as the precursor for synthesis of new cathode material.  In summary the process recovers the following products at more than 99% purity levels: (a) graphite and (b) cathode metal salts e.g. LiCo1/3Ni1/3Mn1/3O2, NiCO3, MnCO3, CoC2O4, and Li2CO3. The technology provider is seeking a partner who is willing to fund the prototype development and become an early adopter of the technology. Preferably, the partner should have access to spent LIB sources to support the trial.
Highly Effective Thermal Management for Battery Systems
Environmental pollution concerns and high fuel cost is driving the car industry towards Electric Vehicle (EV). Li-ion cell is a common adopted energy source for EV. However, Li-ion cells required proper temperature control to function properly. A key factor that affects the battery is temperature. < 0°C:  difficult or impossible for charging >60°C:  difficult for discharging and risk of degradation, shortened service life >70°C ~ 90°C:  will trigger a self-heating reaction with internal cell faults with risk of thermal runaway, presenting safety hazards. Most Li-ion battery achieves their rated capacity at 20~25°C and their capacity will drop ~10% for every increase of 10°C. Regulating the battery temperature during continuous charge and discharge is a challenge, especially in temperate climates. Existing cooling solutions consist of the battery modules sitting on or attached to heat sinks that are in turn cooled by a coolant loop. The drawbacks are that the cooling efficiency is low, and the effectiveness is poor, since only a small part of each module receives the cooling effect. Besides, heat sinks are generally thick and heavy due to the coolant loop. The result is that temperatures will differ from module to module, cell to cell. Even within the same cell, different regions may have different temperatures. Battery packs used in EVs are constrained by space and weight, so cooling systems for the battery packs must be compact and lightweight, and yet meeting the cooling requirements. Our patent granted technology is able to carry coolant to each individual cell in a compact structure. This ensures consistency and uniformity of heat transfer from each cell in a battery pack, extending their lifespan and safety by allowing them to operate in their optimum temperature range (10 ~ 35°C), Charging and discharging can also take place in all ambient temperature.