Sustainability Hub

Agrifood

With only 1% of land available for food production, Singapore relies on imports for 90% of its food supply. To meet the goal of producing 30% of the nation's nutritional needs locally by 2030, Singapore enterprises must embrace agrifood tech innovation. Technologies that enhance agri-inputs and resource efficiency for highly productive urban farming systems in agriculture and aquaculture, together with innovations in alternative proteins, food side stream valorisation and solutions to enhance food safety can pave the way for sustainable and resilient food systems, contributing to long-term food security for Singapore. 

Through the integration of agrifood tech innovation in Singapore, businesses can optimise processes and reduce waste, driving the shift towards a more sustainable food ecosystem. By focusing on food waste valorisation and other transformative agrifood technologies, Singapore can unlock new opportunities in resource efficiency and food production.

Discover IPI’s curated list of agrifood tech solutions, including food waste valorisation, as we aim to strengthen Singapore's food security, ensuring resilience in the food supply chain while promoting sustainable and profitable agricultural practices.  

Nano Iron Supplement for Plants
This technology offer presents a nano-formulated iron supplement designed to enhance nutrient uptake and improve plant growth efficiency. Using nano-sized iron particles, the formulation increases iron solubility and bioavailability, ensuring faster absorption through plant roots and foliage. Iron is essential for chlorophyll production, photosynthesis, and metabolic enzyme activities. In many soils, especially alkaline or calcareous soils, iron becomes unavailable, leading to yellowing leaves and reduced growth. The formulation overcomes this challenge by delivering iron in a stable, highly absorbable form that maintains plant greenness, increases leaf development, and enhances overall plant vigor. Field trials on Brazilian spinach demonstrated up to 82% increase in plant height, broader leaf formation, and healthier coloration compared to untreated controls. The technology owner is open to further co-development and field validation through multi-site trials, data sharing, and performance benchmarking across various soil types and crops.
Plant-based Additive for Bioplastic Barrier Enhancement
Bioplastics have emerged as a sustainable alternative to conventional petroleum-based plastics, offering biodegradability and reduced carbon footprint. However, their use in high-performance applications remains limited because of inherent material weaknesses. A key challenge is their poor barrier properties, particularly against water vapour and gases such as oxygen and carbon dioxide. This limitation prevents bioplastics from being widely adopted in packaging applications that demand strong protective qualities, such as food products, pharmaceuticals, and sensitive electronic components. In most cases, bioplastics are restricted to low-demand items like disposable bags or cutlery, where barrier performance is not critical. This technology addresses the key challenge of poor barrier properties by introducing a plant-waste-derived additive that enhances barrier properties of bioplastics. Incorporated directly during melt processing, the additive reduces the water vapour transmission rate (WVTR), enabling bioplastics to provide effective moisture protection. Because the additive is derived from upcycling of plant waste, it reinforces the sustainability narrative while aligning with circular economy principles. This technology also functions as a drop-in solution compatible with existing manufacturing processes, allowing packaging producers to adopt the technology without costly modifications. The technology owner is interested in co-development R&D opportunities and out-licensing of the developed IP with companies developing sustainable bioplastic products with enhanced barrier properties.
Transforming Agricultural By-Products into Sustainable Materials
The global push for sustainability is driving demand for innovative solutions to reduce waste and conserve resources. While the focus has often been on synthetic materials like plastics, millions of tons of agricultural waste remain underutilized. Instead of being landfilled or incinerated, this renewable feedstock offers a major opportunity to support a circular economy and lessen dependence on virgin resources. This technology is a proprietary, chemical-free process that converts agricultural by-products into durable, eco-friendly materials. By harnessing diverse agricultural waste streams, this process yields thin plates and modular elements that can replace conventional raw materials in applications such as roofing, flooring, furniture surfaces, and wall furnishings. Designed for circularity, these materials can be broken down and reintroduced as feedstock at the end of their lifecycle, minimising waste and maximising resource efficiency. The technology owner is actively seeking R&D co-development and out-licensing of the developed IP to companies intersted in advancing sustainable materials and scaling this circular economy solution. 
AI-Enabled Food Waste Contamination Audit System
Food waste streams are frequently contaminated by packaging, utensils, and other non-food items, undermining efficient downstream treatment and resource recovery. Contamination drives multiple pain points for food operators, premise owners and municipalities such as rejected loads and surcharges, lower conversion yields at valorisation facilities, equipment fouling and downtime, higher manual-sorting labour, and unnecessary transport emissions when contaminated loads are hauled before being discarded. This technology aims to address the issues with food contamination by delivering continuous, at-source contamination auditing and monitoring. The technology on offer is a smart food‑waste monitoring and profiling platform designed to bridge the gap between regulatory requirements and on‑site practices. By integrating AI‑enabled image analysis, weight measurement and a waste taxonomy, the system delivers real‑time contamination detection and detailed waste profiling. Together, these elements form a scalable, cost‑efficient solution that empowers food operators and premise owners to improve segregation quality, comply with evolving regulations and enhance the feedstock quality for downstream resource recovery.          The technology owner would like to collaborate with operators of multi-user food environments—such as hawker centres, food courts, and shopping malls—where at-source contamination is a primary challenge, to pilot the system, improve segregation, reduce contamination, and demonstrate measurable progress toward sustainability goals.
Optimisation of Shrimp (L. Vannamei) Feed with Underutilised Okara
In Singapore, more than 30,000kg of okara are generated from soya milk and tofu production. Due to the high amount of insoluble dietary fibre and a unique, poignant smell of okara, it is often discarded as a waste product. Despite okara's low palatability, it is rich in nutrients such as protein, fibre and isoflavones. By replacing fishmeal with okara, an local higher institute of learning has developed a nutritious yet cost-effective formulation in the feed of L. Vannamei shrimps. Besides reduced overall cost of shrimp meals, the conversion from okara to shrimp meal significantly reduces the amount of organic waste to landfills and promotes economic viability, giving okara a second life. This circular economy model creates a symbiotic relationship between two industries. The formulation can potentially be adapted and customised for other aquatic species. The technology provider is seeking to work with shrimp farmers to run larger trials.
Formulation and Optimisation of Fish (O. niloticus) Feed from Food Waste Protein Source
The aquaculture industry is facing rising costs of conventional feed. Premium protein sources such as fishmeal and fish oil are highly price-volatile due to fluctuating supply and demand, and reliance on imported feed further increases costs. Another key challenge is the growing volume of food waste. A survey of local food processing companies conducted between August 2022 and June 2023 identified approximately 174,300 tonnes of homogeneous food waste, highlighting the scale of the problem.  This technology offers a sustainable aquafeed solution by converting by-products from soy sauce production, fish processing, and bread waste into nutritionally balanced feed for tilapia (O. niloticus), maintaining optimal growth performance while reducing dependency on conventional, expensive feed ingredients. 
Transforming Food Waste into Cost-Effective Animal Feed Solutions
The agriculture sector faces a double challenge: rising animal feed costs and unsustainable food waste management. For many livestock farmers, feed accounts for up to 70% of operating costs, with heavy reliance on volatile imports like soybean meal, corn, and fish meal. At the same time, the food and beverage industry generates millions of tons of nutrient-rich by-products such as okara, spent grain, and fish offal, much of which is discarded—causing methane emissions and environmental harm. This technology provides a circular solution by converting high-moisture food waste into stable, high-value livestock nutrition. Through an innovative bio-conversion process, nutrient-rich by-products are rapidly transformed into a low-moisture, shelf-stable feed enriched with beneficial microorganisms. The resulting feed not only reduces dependence on imported raw materials but also supports animal health and productivity. Compared with insect protein or traditional heat-drying, this approach is faster, more energy-efficient, and scalable across both rural and industrial contexts. The technology directly lowers feed costs for farmers by 5–20%, creates new revenue streams from food waste, and cuts greenhouse gas emissions by up to 2 tons of CO₂e per ton diverted, while requiring only low CAPEX and minimal investment for setup. The technology owner seeks collaboration with IHLs, research centres, F&B/waste management players, and deep tech IoT companies for R&D, licensing, and test-bedding opportunities.
Cricket-Based Asian-Style Crackers
The world faces a mounting challenge in feeding a growing population projected to reach 9.7 billion by 2050 (United Nations). This increase drives demand for high-quality protein, but traditional sources like livestock, poultry, and fish are resource-intensive (e.g., water, land, feed), environmentally harmful (GHG emissions, deforestation) and increasingly unsustainable. With high efficiency, low emissions, and strong nutritional value, insect protein offers a sustainable alternative to conventional meat sources—especially relevant in urbanized, climate-conscious societies seeking innovation in food systems like Singapore. Crickets possess subtle flavours reminiscent of crustaceans, making them an excellent addition to our fried crackers. This familiar taste profile is particularly advantageous in Southeast Asia, where prawn crackers (Keropok) are a beloved snack. By leveraging this familiarity, this technology hopes to achieve greater consumer acceptance and rapid market adoption. These versatile crackers can be savoured as a delightful snack or paired with traditional dishes such as Nasi Lemak. Whether enjoyed as a standalone treat or as an accompaniment to a meal, these cricket-infused fried crackers offer a unique and flavourful experience that bridges the gap between innovative food trends and cultural culinary traditions.
Revolutionizing Crop Growth & Post-Harvest Freshness
With increasing regulatory pressure to reduce synthetic agrochemicals and growing consumer demand for pesticide free and longer lasting produce, there is a gap in the agriculture industry for a robust solution. The technology featured is a proprietary bioflavonoid blend, a key bio-active agent formulated into two unique solutions that can be applied across the entire food supply chain—from farm to table. These organic solutions are designed to enhance agricultural productivity while extending the shelf life of fresh produce. Benefits include: Nutrient Optimization – Rapidly addresses deficiencies, ensuring crops reach their full potential Soil Regeneration – Stimulates beneficial soil biology, enhancing long-term fertility Accelerated Early Growth – Strengthens root development and speeds up early-stage crop growth Harvest Efficiency – Enhances flowering, improves bud retention, and promotes even ripening, reducing labor and processing costs