Tech Bundle

AgriFood

Today, 90% of Singapore’s food supply is imported. With the rapid growth in AgriFood innovation, Singapore is positioning itself as a significant contributor to the global conversation on sustainable food production and AgriFood Tech.

Adopting innovative AgriFood technologies is crucial to attaining the country's goal to produce 30% of its nutritional needs locally by 2030.

The AgriFood Tech Bundle offers a curated list of technologies for enterprises to access, license or co-innovate with technology providers to create new products and services in the agribusiness. Featuring a range of solutions that can improve plant yield, enhance resource efficiency in urban farming, reduce food waste as well as new alternative protein sources, enterprises can leverage the AgriFood technologies to accelerate their product and service development, contributing to Singapore’s ambitious “30-by-30” national goal.

Discover how Singapore is driving agrifood innovation and transforming the future of sustainable food production with initiatives like the IPI AgriFood Tech Bundle in advancing technology and collaboration in the sector.

Capitalising On Spent Coffee Grounds (SCG)
Only 20% of actual coffee is extracted from beans to produce coffee in its beverage form, leaving the remaining 80% (six million tons annually) deemed as spent coffee grounds (SCG) to be disposed or used in landfills or as non-food product components to make fertilisers, furniture, deodorisers or skin care products. A technology was created to counteract SCG wastage and valorise it for human consumption. This particular invention comprises of methodologies to create two types of ingredients using leftover SCG - oil-grind and water-grind processed SCG. A simple, reproducible method of conching is employed to convert leftover SCG into smooth pastes, where specific conching parameters help refine the SCG to an acceptable particle size, eliminating grittiness in numerous valorised products similar to SCG. The product utilises common ingredients like oil and water to conche SCG with improved taste and textural properties. The shelf stability and nutritional composition (including caffeine) of the ingredients were also validated to ensure the food possessed good sensorial properties and are scale up ready. This technology increases SCG’s potential use as a versatile ingredient in different food applications. The technology provider is seeking off-takers from food manufacturers, food services industry, companies interested to valorise side streams to turn SCG into edible compounds.
DNA Test Kit for On-site Diagnostics of Tropical Crop Diseases
Fast crop disease management is important to ensure sustainable production. Many tropical crops suffer from infectious diseases that spread and kill plantations. Previously, new land had to be allocated to replant crops in disease-free areas. This is now more challenging because land conversion implies deforestation. Thus, one way to improve the metrics of both production and sustainability is by testing for infection before moving the non-infectious material (i.e. in nurseries). However, as PCR testing in tropical countries is more challenging due to logistics and other factors, testing on-site would be a preferred option. This technology is a unique, portable, self-administered DNA detection kit to be used directly on-site to test for the DNA of the pathogen (virus, fungus etc.). Developed in Switzerland, the technology has already shown one use case for cocoa testing in West Africa and is shipped in the country without a cold chain.
Amphibian Collagen: A Sustainable-Derived Biomaterial with Multi-functional Capabilities
Collagen is a structural protein prevalent in the connective tissues of all organisms, and is the building block of biomaterial that is essential in wound healing and tissue regeneration. Through a patented extraction method, a novel Type I Amphibian collagen has been valorised from discarded skins, an agrifood waste stream and processed into a medical grade collagen biomaterial. The extracted pristine native amphibian collagen possesses unique properties, combining attributes associated with aquatic and land-based collagen sources, giving the extracted collagen more versatility than conventional sources of collagen. The Type I Amphibian collagen possesses a higher biocompatibility and water solubility as compared to mammalian sources of collagen, with a better thermostability profile, than marine sources of collagen. The technology provider has demonstrated the medical application of this extracted collagen by developing a range of specialised wound dressings, specifically designed for the management of chronic wounds. These dressing will significantly improve clinical outcomes and increase the rate of chronic wound closure.  The technology provider is looking for partnerships or collaborations to transform this pristine collagen into medical products. Additionally, with a pristine collagen extract, hydrolysing them into smaller fragments (collagen peptides) that can be customised to the needs of the partnership or collaboration, for the medical/cosmeceutical/nutraceutical industry. 
Modular, Easy-to-use, Cloud-based Bioreactor for Advanced Bioprocessing
This biotechnology pertains to a modular cloud-based bioprocessing system designed to streamline and enhance the cultivation and analysis of biological cultures. Addressing the complexities and constraints of traditional bioprocessing, this technology simplifies operations, making advanced bioprocessing tools accessible to a broader range of users. It has shown its versatility across various segments including educational institutions, research labs, biotech and bio-manufacturing companies and even within the food service industry, providing an efficient, flexible, affordable and scalable solution for growing biological cultures.
Functional Instant Noodles Fortified with Shrimp Shells
This technology aims to tackle the food waste problem in the Thai agricultural sector. Shrimp shell was selected since it constituted a large portion of all crustacean shell waste. Many tons of shrimp shells are discarded daily. However, they contain high amounts of protein, calcium, and umami compounds. Thus, they can be used to fortify food products.  Currently, the instant noodle market still has a limited number of healthy options. Therefore, there is a significant market opportunity to develop a low sodium and high protein instant noodle product.
Egg Alternative from Rice Bran Protein
Eggs are a widely popular protein source, however, egg production requires a significant amount of natural resources. Hence, this technology aims to substitute chicken eggs with plant-based alternatives, which would lead to a reduced environmental impact. Rice bran is the hard outer layer of rice, a byproduct of the rice milling process which is pressed for oil and then discarded. Using rice bran as a source of protein reduces waste and increases resource efficiency, making it a strong potential candidate as an alternative protein source to be produced in Thailand, which is the 6th largest rice producer according to the FAO. This product is high in protein (comparable to chicken eggs), which is hydrolyzed to increase bioavailability, and does not contain cholesterol and saturated fat. It is fit for health and fitness enthusiasts, vegetarians, flexitarians and people with an egg allergy.
Upcycling of Egg White Waste from Salted Egg Yolk Production
Egg white is a well-known super-food as an absolute protein with a complete essential amino acid profile, easily digestible, and no cholesterol. While salted egg yolks are a common ingredient in many traditional Asian dishes, the egg white is discarded as it has limited applications due to its high salt content. This technology valorizes the salted egg white waste from the production of salted egg yolks into a tofu-like form that has many culinary applications. This is done using a patent-pending technique that is developed for desalination and reformation of egg white protein.
Unique Tubular Solar Photovoltaic (PV) Technology for Agrivoltaic Farming
In a world where resources are diminishing and demands are rising, the value of land has significantly increased for clean energy and food production. Agrivoltaic farming represents a potential game-changing solution that can bring substantial benefits to both the energy and food sectors. The patented technology is a tubular solar photovoltaic (PV) module designed for agrivoltaic farming. The unique tubular nature of the system allows sunlight, water, and wind to reach the plants below while simultaneously harnessing solar power. Moreover, the tubular modules can provide consistent partial shading to protect the plants and reduce ambient temperature and ground moisture loss. This technology enables the dual use of land by integrating agricultural activities such as farming and gardening with solar power generation, maximising the value derived from the limited land. The combination of energy harvesting and agriculture has significant potential to improve farming productivity, increase land-use efficiency, reduce carbon emissions, and promote environmental sustainability. The technology owner is keen to collaborate with partners interested in agrivoltaic farming like farmers, gardeners, agritech companies, research centres, and ministries to test-bed and adopt their tubular solar PV technology. The technology owner is also seeking industrial partners (e.g., manufacturers, system integrators, architects, designers, etc) to co-develop a complete solar energy solution or integrate the tubular solar PV modules into specific use cases.
Harnessing Blowflies for Sustainable Solutions
Blowflies are insects often used for scientific research in fields such as forensics, veterinary science, ecology, and biology. Scientists study them at different stages of their lives, including maggots and adult blowflies.This technology relates to a fully operational and scalable multi-species insectary (Arthropod Containment Level 2) which focuses on harnessing the potential of non-medical blowflies for agricultural and waste management sectors. Firstly, blowfly maggots can be produced at scale to act as biodigesters to break down and convert agri-food waste or side streams to valuable blowfly insect protein. With additional processing, bioactive compounds can be extracted from these insect proteins with diverse applications in medicine and industry. When maggots mature into blowflies, they can be deployed for all-year-round insect pollination instead of bees. This can be conducted in controlled environments, including Indoor Vertical Farms, Greenhouses, and Polytunnels. This application has been validated with state-of-the-art UV lighting technology where blowflies are adept at locating flowers and conducting crucial pollination activities. The technology provider is actively seeking collaborative partnerships with stakeholders from the agriculture sector to enhance crop yields for farmers, while also aiming to collaborate with the waste management industry in order to minimize waste generation and transform it into valuable products through recycling.