Tech Bundle


Today, 90% of Singapore’s food supply is imported. Adopting innovative AgriFood technologies is crucial to attaining the country's goal to produce 30% of its nutritional needs locally by 2030. The AgriFood Tech Bundle is a well-curated list of technologies for enterprises to access, license or co-innovate with technology providers to create new products and services in the agribusiness. Featuring a range of solutions that can improve plant yield, enhance resource efficiency in urban farming, reduce food waste as well as new alternative protein sources,  enterprises can leverage the AgriFood technologies to accelerate their product and service development to attain the "30-by-30" national goal.

Method for Enhancing Lignocellulosic Biomass Side Stream Pre-treatment
Lignocellulosic biomass side streams derived from the agri-food value chain such as agricultural residues, have the potential to be converted into high-value products, including biofuel, bio-composite construction materials, and sustainable packaging. Among the various conversion processes, pre-treatment plays a crucial role in maximizing the value of lignocellulosic biomass. The primary objective of pre-treatment is to address the complex and heterogeneous structure of the biomass by removing lignin, reducing biomass size, and increasing the surface area for hydrolysis. Unfortunately, current pre-treatment methods for lignocellulosic biomass are energy-intensive, costly, and produce inhibitory compounds that impact subsequent production stages. To overcome these challenges, this technology offers a catalytic oxidation pre-treatment process. This innovative approach operates under ambient or mild conditions, with a short reaction time, resulting in reduced energy consumption and treatment costs. The technology provider is seeking interested parties from the agricultural, biofuels, or biogas industry to license this catalytic oxidation pre-treatment process to enhance their operations and achieve a more sustainable and cost-effective production of valuable products from lignocellulosic biomass.
Proprietary Tech To Create Low Glycaemic Index Food & Beverage Applications
Diabetes is a prevalent and growing health problem worldwide, affecting 1 in 10 people, with 90% of cases being type 2 diabetes. Congenital diabetes also affects 1 in 6 live births. In the next 20 years, diabetes is projected to increase by 46%. More than half a billion people are affected globally, 400,000 of them are in Singapore and if nothing is done by 2050, there will be one million diabetics patients in Singapore.   The company offers two technical solutions in form of a blended powder format: 1) Low Glycaemic Index (GI) and 2) Low Glycaemic Index (GI) with added protein.   The blend is plant-based, a source of protein, high in dietary fibre and replaces sugar from 20% to 100% in recipes across various food and beverage applications, it is versatile, high solubility, no alternation to original taste.   The solution is primarily targeted at Food Service sectors operators and manufacturers who seeks to penetrate the reduced sugar food & beverage market. 
Conversion of Lignocellulosic Biomass Side Stream to Plywood Replacement
Plywood is a preferred material used in furniture and home building for its durability since the Egyptian and Roman times. In 2019, the world consumed 165 million cm3 of plywood and was responsible for the creation of more than 3 billion tons of CO2. Applications for plywood are widespread including construction, home, retail, and office interior works and furnishings such as cabinetry, woodworking, renovations, and outfitting. Regulations and protectionism to slow down deforestation plus the tightening of sustainable forestry management lessen the supply of logging for plywood.  As global demand continues to be strong, the search for a viable replacement for plywood has become more pressing. More importantly, it is important to find a non-wood-based replacement with similar performance to plywood. Plywood is desirable because of its superior performance properties. Alternatives like medium-density boards (mdf) and particle boards are made from recycled wood waste. Unfortunately, plywood can only be made from virgin wood and there are no direct replacements for plywood currently. This technology leverages the global abundance of lignocellulosic fibre waste which is the discarded waste material after the harvesting and production of palm oil, rice, and wheat. The technology transforms these lignocellulosic fibre wastes into a direct replacement for conventional plywood.  This provides a sustainable, economically viable, and environmentally friendly solution to the continuing demand for plywood and the resolution to the growing lignocellulosic fiber waste problem in agri-food-based countries all over the world. The technology owner is open to various forms of collaboration including IP licensing, R&D collaboration, and test-bedding with different types of agrifood sidestreams. In the case of palm biomass waste, rice, and wheat straw waste, the technology is ready for commercialization.
Converting Seafood Sidestreams Into Nutritious Foods
Asia accounts for approximately 70% of the world’s seafood consumption, around 69.6 million metric tons. This is more than twice the total amount consumed by the rest of the world.* Commercially, about 30% of the seafood is not consumed, from bones to offals, to skin/shell/scales. These food loss and waste potentially impose environmental and socioeconomic issues.  The technology provider has developed a green chemical process converting seafood sidestreams into food products that are not only high value but also nutritious, addressing Singapore’s demand to increase production of nutrient dense foods. In addition, this method is efficient and cost effective as it requires basic equipment. The technology provider is looking for R&D collaborators and for test-bedding especially with industries who are producing aquaculture food with high nutritional value and interested to utilise their sidestreams more sustainably. * FAO 2018
Automated Environmental Control for Indoor Farming
Indoor farming presents a range of different challenges to crop yields compared to outdoor farming activities. Traditional outdoor farmers intuitively know what environmental factors affect the growth of the crop. Indoor farming, on the other hand, requires the farmer to simulate the optimal climate conditions for expected crop yields. The indoor climate can either contribute to the yields or, in unfortunate circumstances, lead to the loss of the crop. However, it is not always easy to create an ideal environment for the crop.  This technology offer is a control system that allows the facility manager to align optimal crop conditions with the equipment settings in their facility, minimising the drift between settings and site-level crop conditions. The control system can also be used to compute the correlation between data across crop production, environment, and business performance. The control system can be customised further by adding other sensors for better accuracy of control.  The technology owner is keen to do R&D collaboration and licensing with innovative industrial automation companies specialising in product development of sensor networks and high-data throughput IoT gateways.   
Upcycling Hair and Feathers into Biodegradable Bioplastics
Keratins are naturally occurring proteins found in hair, feathers, wool and other external protective tissues of animals. They are highly abundant, naturally produced and generally underutilized. At the same time, keratins offer versatile chemical properties that allow interactions with themselves or with other materials to improve behaviour. The technology provider has developed sustainable, biodegradable plastic materials by upcycling keratins derived from hair and feathers. In the preliminary studies, the technology provider has found ways to produce films that have the potential to be used as packaging materials. These films do not disintegrate readily in water, yet they fully degrade in soil within a week. They can be made in combination with other waste-derived biopolymers to improve strength to meet the needs of specific use cases. This technology is available for R&D collaboration, IP licensing, or IP acquisition, with industrial partners who are looking for a green packaging solution and to explore specific-use-case products. The technology provider is also interested to collaborate with the OEM partners having the keratin extraction facility from feathers and hair for the deployment of this technology.
Optimised Nutrient Formulation for Improving Crop Yield
Different plant species have different nutrient requirements. The current practice of urban farming uses a generic hydroponic nutrient solution that is suitable to most plant types, and a crude sensing system that only measures total ion content in the solution. This approach often results in nutrients deficiency and/or overloading and hence requires consistently monitoring. Overloading of nutrients not only increases the input costs, it also results in greater quantities of contamination in effluent to be disposed after harvest.  A targeted hydroponic nutrient solution reduces the need to periodically adjust the nutrient. The technology provider has studied and formulated different nutrient recipes that had shown improved yield compared to commercial products. This ensures the best growth for each crop type. It also reduces common problem stemming from imbalanced nutrient, e.g. leaf chlorosis due to nutrient deficiency. All these translate to a better yield and a more marketable produce for the farmers. Formulations developed include Mizuna, Kale, Lettuce, Mustard, Kalian, and Caixin. The technology provider is seeking for licensing partners from the agriculture industry.
Low-Cost Adsorbents From Spent Coffee Grounds For Industrial Wastewater Treatment
Spent coffee grounds are one of the major food waste produced globally with several million tonnes being discarded annually. It has been reported that only 6% of the original coffee cherry can be used to make a cup of coffee and the remaining balance are inedible and has no value to the industry. As such, a large amount of residue is currently generated from the coffee industry and disposed of at incineration plants or landfills.   This technology features a cost-effective and scalable thermochemical process to transform spent coffee grounds into carbon-rich solid materials, known as hydrochar, as a form of low-cost solid adsorbents for industrial wastewater treatment. Thermochemical processes are well suited for wet biomass such as spent coffee grounds and utilises mild temperature profiles under relatively low pressures. The process also has the potential to convert other kinds of food waste, such as durian husks, coconut husks, fruit peels etc, into hydrochar.This presents a sustainable solution for creating a circular economy and minimising negative impact on the environment by converting non-edible and no value food waste into a value-added product for food and water industries.
Extension of Crop Harvest Period Through Customised LED Light Recipes
The majority of the local indoor farmers grow crops that are harvested for their leaves. One way to increase the growth rate of such leafy greens is to provide a longer period of light. However, some of the crops grown, e.g., spinach, are long-day plants that flower when the light periods are longer than their critical day-length. While important to a plant’s life cycle, this vegetative to reproductive phase change is undesirable for farmers, not only because it shortens the harvest period hence reducing the yield, but also because it changes the taste profile. To tackle this problem, a light recipe that was able to suppress flowering was formulated. Plants grown under this light recipe showed a faster growth rate than those grown under flowering-suppressing short-day photoperiod. Moreover, they do not flower even when the light period has surpassed the critical day-length. Positive results were obtained when this light recipe was tested on spinach and arugula. This technology would work for other long-day crops, and it will be beneficial to indoor farmers who are interested to try it.