Tech Bundle

Sustainability

Sustainability is no longer a buzzword, but an environmental, economic and social driver that is changing our daily lives. In the business community, committing to sustainable practices is vital as the negative impacts of climate change have become more prevalent, with the potential to affect everything from supply chain to profitability.

To achieve sustainable development, the Singapore Green Plan sets bold targets to accelerate decarbonisation and sustainability efforts. Technology is shaping sustainability and enabling advanced levels of productivity, efficiency, resource and cost savings, all of which can help to minimise the impact on the environment.

To enable enterprises’ sustainability journey, IPI have curated technological innovations and co-creation opportunities in four areas: Circular Economy, Food Security, Green Energy and Emissions Management, and Sustainable Living: Health and Well-being.

Seeking Non-Toxic Flame-Retardant Coating for Polymeric Materials
The increasing emphasis on fire safety regulations and standards, along with the growing awareness of the potential hazards posed by fires, has driven the demand for flame-retardant coatings. These coatings play important roles in fire protection by effectively slowing down the spreading of fires, thereby preventing catastrophic accidents, safeguarding assets, and saving lives. Industry segments such as electronics, automotive, aerospace, construction, and household, which extensively utilise materials prone to fire hazards, require effective fire protection solutions. As the demand for flame retardant coatings continues to rise across various sectors, the market is experiencing significant growth. According to MarketsandMarkets, the global flame retardants market is expected to be worth USD 9.5 billion by 2028, with a compound annual growth rate (CAGR) of 5.2%. Particularly, the Asia Pacific region is the fastest-growing market.   Traditional flame retardants, especially those containing brominate or chlorine, have been associated with their impacts on the environment and human health. Consequently, the demand for environmentally friendly coating solutions, such as nanocomposites and natural bio-based retardants, is growing at a rapid pace. However, the performance, efficiency, environmental impact, and cost-effectiveness of these alternative materials are still hot topics of ongoing research. This tech need calls for non-toxic and innovative flame-retardant coatings capable of addressing the above challenges. Such coating solutions should be available for test-bedding, licensing, and co-development with industrial partners, paving the way for safer and more sustainable fire protection methods.
Lixiviant for High Efficiency Extraction of Palladium (Pd) from Electronic Waste
The exponential growth of electronic waste (E-waste) generation is proliferating due to the ever-increasing demand for electrical and electronic equipment (EEE) driven by industrial revolution and development. The COVID-19 crisis has further accelerated the shift towards digital transformation, contributing to an upsurge in E-waste generation. To-date, the industrial practices of extracting palladium (Pd) from electronic waste and mining ores rely on hydrometallurgy techniques using highly corrosive acids, typically aqua regia at elevated temperature. The process poses severe hazards to workers and lead to environmental pollution. Aqua regia’s capability to dissolve many various metals results in low selectivity for Pd. Despite ongoing efforts to develop alternative methods, these methods often prove impractical for industrial adoption. The technology provider has developed a proprietary lixiviant capable of extracting palladium up to 4,000 ppm at saturation with high extraction efficiency and selectivity within 12 hours. This lixiviant is facile, cost-effective, and significantly less corrosive and hazardous compared to current industrial practices. Substituting fuming aqua regia with this lixiviant could enhance the protection of workers and environmental safety. Importantly, the proposed technology is highly compatible with existing hydrometallurgy processes, eliminating the need for companies to change their current infrastructure. An E-waste industry partner has successfully conducted a pilot-scale (5-Litre scale) evaluation, validating the effectiveness and applicability of the lixiviant on their Pd-coated samples. The technology provider is actively seeking industry partners interested in test-bedding and licensing of this technology.
Cost-Effective Protective Coating Enhancing Durability of Electrode Catalyst
Electrolysis has diverse applications across various sectors, such as household and industrial electrolyzed water treatment, soda electrolysis, electrolytic plating, electrodeposition, and hydrogen generation. In electrolysis using insoluble electrodes, the electrocatalyst acting as the reaction field for the electrode reaction undergoes gradual abrasion. Given the high cost of precious metals (i.e., platinum group compounds) used as catalysts, protecting the catalyst and reducing the wear rate are crucial for extending the lifetime of electrodes and reducing the maintenance cost. Current technologies include multilayer electrodes that have a surface layer of noble metal oxide on the electrocatalyst to reduce catalyst wear. However, this method proves more expensive than ordinary insoluble electrodes. Additionally, the surface layer cannot be recoated. To address the challenge, the technology owner has developed a proprietary protective coating that effectively protects the catalyst on the surface of existing insoluble electrodes. This solution enables effective electrode protection through an inexpensive coating, reducing catalyst consumption and electrode replacement frequency. The coating can be reused by recoating the electrode, also contributing to the perspective of “Circular Economy”. The technology owner is seeking R&D collaboration with industrial partners such as electrode manufacturers, coating manufacturers, and companies utilising insoluble electrodes in electrolysis, especially electrolytic plating and metal recovery. 
Vanadium Redox Flow Battery for Enhanced Energy Storage Solution
Today, the cost of energy generated by renewable sources is less than conventional energy. However, current energy storage solutions (e.g. Lithium-ion battery etc.) used to harness energy from renewables are expensive, unsafe and unreliable which has severely impeded the adoption and development of such renewable sources. Hence, there is a need for a cost efficient, safe, environmentally friendly and reliable energy storage system (ESS) to address these existing issues. This technology offer is a vanadium redox flow battery (VRFB) as a promising ESS. Unlike lithium-ion and lead acid batteries, VRFB has the flexibility to design and customise its power and energy density independently. This results in enhanced performance in terms of round-trip efficiency, energy density and thermal window as well as lowered levelised cost of storage when benchmarket against lithium-ion battery based ESS for long discharge duration. The VRFB also uses a unique stack design and an organic additive mixture on the electrolyte that improves the thermal stability and allows for 25% increase in energy efficiency when compared to other VRFB solutions.It also reduces safety risks related to over-charging, discharging and thermal runaways. This VRFB ESS is stable for up to 25 years with no electrolyte degradation and is made with environemtally friendly materials. The technology owner is seeking partner and collaborators especially those in renewable energy, large scale utility and microgrid projects to test bed their technology.
Effective and Versatile Deodorant Solution for Odor Removal
Issues associated with odor generation present significant challenges in various aspects of daily life, encompassing unpleasant smells from various sources such as toilets, kitchens, pets, tobacco, hospitals, and transportation. These unwanted odors have a detrimental impact on individual well-being, social interactions, and overall environmental quality. Deodorants play a crucial role in addressing these challenges, fostering a more comfortable and hygiene environment. However, conventional deodorants primarily rely on masking the unwanted odors with a strong fragrance, resulting in a slow and ineffective deodorization process, particularly against strong smells. The technology owner has developed a proprietary formulation that offers an effective deodorization approach. Unlike common deodorants, the unique deodorant using the proprietary formulation can remove the sources of unpleasant smells through chemical reactions. It demonstrates remarkable efficiency against a broad spectrum of odors, including those from rotting fish and meat, rotting eggs and milk, rotting vegetable waste, ammonia in toilets, sweat, and body odor. This innovative solution has the potential to revolutionise odor control across diverse scenarios. The technology owner is seeking R&D collaboration with industrial partners who are interested in incorporating this deodorant into their products and applications.
AI-Based Electrical Asset Monitoring and Data Platform
The proprietary solution is a data acquisition and analytics system that employs non-intrusive clip-on current transformers which are easily installed at electrical distribution boards. This enables AI algorithms to detect subtle changes and patterns in the electrical signature of each connected asset or device. Monitoring electrical assets has traditionally been complex and costly, requiring multiple sensors and expensive systems. This has led to widespread under-monitoring,  resulting in expensive maintenance and significant energy inefficiencies. The solution extracts a proprietary set of deep energy data from electrical devices, assets, and machines, and can be easily installed on both new and existing electrical assets or building infrastructure. It offers real-time monitoring and reporting on important metrics such as real-time power usage effectiveness (PUE) and enables automation of sustainability reporting. The technology offers an industry-changing solution: a non-intrusive cost efficient AI-powered monitoring system that is easy to install. It generates a proprietary data set that fuels machine learning algorithms, enhancing efficiency and reducing total cost of ownership for all connected assets. The technology owner is seeking test-bedding partnerships with real estate businesses, data centre companies or service providers, facility management businesses.
Carbon Dioxide Removing Additive for Textiles
As rapid global warming accelerates, the need for increased sustainability efforts has become a critical societal challenge. While individual lifestyle changes can contribute, their impact remains limited without broader systemic shifts. This places significant pressure on industries, particularly the fashion & textiles sector, a major contributor to climate change responsible for 10% of global greenhouse gas emissions. Decarbonising this industry is therefore crucial to achieving a sustainable future. This technology enables textiles and fabrics to remove carbon dioxide (CO2) from air. The patent-pending material functionalises textiles to capture CO2 present in air which is sequestered into a harmless mineral during the laundering process. The resultant mineral which is environmentally safe is then washed away, leaving the textile recharged to remove CO2 once more. With this technology, decarbonisation of the textiles industry can be achieved through the decentralised action of consumers utlising functionalised carbon removing products. The technology owner is interested in working with interested companies in the fashion industry value chain to test-bed this new material for carbon removing apparel and fabrics.
Water-based Barrier Coatings for Paper Packaging
Paper packaging is a versatile material used for a wide range of products. Its widespread adoption is due to its renewable and relatively low-cost resource along with environmental benefits such as recyclability and biodegradability. While paper packaging offers several advantages, some drawbacks of the material include porosity and the lack of barrier properties against moisture, oil, and grease. To overcome these limitations, conventional coatings such as polyethylene (PE) or polyfluoroalkyl substances (PFAS) have been employed to impart the required barrier protection. However, during the paper recycling process, it is difficult to repulp the coated paper due to several factors and results in reduced recyclability of such packaging materials. The technology on offer is a water-based coating formulation that can be applied onto paper packaging surfaces to act as a barrier against grease, liquid water, and water vapour. The coating imparts barrier protection functionalities, improving the paper’s resistance to grease, liquid water, and water vapor significantly. Use of bio-sourced constituents in the coating also improves product sustainability. As the coating’s constituents are repulpable, recyclability of the paper packaging can be achieved. With increasing awareness of reducing packaging waste, the deployment of this technology will offer companies a recyclable paper packaging with notable barrier properties. The technology owner is seeking for R&D co-development, test bedding and IP out licensing opportunities of this technology with interested companies.
Nano Delivery Technology That Improves Consistency and Longevity of Fragrance Sprays
Fragrance and deodorising sprays for home care, fabric care and pet care applications often suffer from inconsistent and shortlived performance. This Nano Delivery Technology encapsulates fragrances, essential oils and other odourous compounds into nano sized biodegradable capsules that can anchor themselves efficiently to fibres and hairs, while regulating the release of the encapsulated compounds over prolonged time periods. The encapsulation process takes place at room temperatures, using low energy methods, that preserves the integrity of the actives. The technology is designed as a ready-to-use adjuvant allowing manufacturers to nano encapsulate the actives independently and easily using their existing process and production equipments.