Sustainability Hub

Environment

Environmental technology and innovations play a critical role in driving Singapore's sustainability goals. By advancing waste management to promote a circular economy, ensuring pollution control, safeguarding public health, and building climate resilience, these environmental innovations help create a resource-efficient and climate-resilient nation. 

IPI’s curated selection of cutting-edge environmental technologies presents enterprises with unique co-creation opportunities to address pressing environmental challenges. In line with the Singapore Green Plan 2030, these solutions empower businesses to contribute to a low-carbon, climate-resilient future, while unlocking new avenues for sustainable growth and long-term business success.

With environmental technology and innovation at the forefront in Singapore, businesses can leverage these advancements to enhance their sustainability efforts, meet stringent environmental standards and remain competitive, while contributing to a greener economy. 

Solution to Repair Concrete Cracks, Mitigate Rebar Corrosion and Concrete Carbonation
Concrete deterioration caused by cracking, carbonation, and rebar corrosion represents a multi-billion-dollar global challenge. The global concrete repair market is valued at approximately USD 20 billion. Current methods are often labour-intensive, disruptive, or temporary, creating a strong demand for durable, cost-effective, and sustainable repair solutions. This innovation addresses these needs with a two-part treatment system that restores durability and prevents further structural damage: Water-based Concrete Sealer: Applied directly to concrete and steel surfaces, it prevents the ingress of water and corrosive agents (e.g., chlorides). This reduces the rate of concrete carbonation and rebar corrosion, while also functioning as an anti-corrosion coating for steel reinforcement. Micro-cementitious Crack Injection Sealant: A flowable, non-shrink material designed for sealing narrow concrete cracks (≥1.0 mm). When injected into damaged concrete, it consolidates the structure, re-alkalises adjacent carbonated concrete, and protects embedded steel rebars. By reinstating the passivating layer around embedded bars, it slows corrosion and reduces the likelihood of further cracking. Unlike traditional polyurethane injections, it provides durable, long-lasting repair without shrinkage. Both the water-based sealer and micro-cementitious sealant can be used independently or in combination, depending on the protection and repair requirements. This technology is available for R&D collaboration, IP licensing, and test-bedding with industrial partners in the construction and infrastructure sectors.
Durable Filtration Membranes and Systems for Challenging Wastewater
Industrial wastewater treatment faces persistent hurdles, especially in oil and gas, petrochemical, metal finishing, and food processing industries. Conventional membranes suffer from rapid fouling when exposed to high oil and grease loads, degrade under extreme chemical cleaning, and struggle to maintain flux recovery. This often results in frequent downtime, costly replacements, and an inability to consistently meet discharge compliance. The technology is a next-generation ultrafiltration (UF) membrane engineered for highly aggressive industrial environments. Built from military-grade, chemical-resistant polymers, the hollow fiber design achieves high flux with low fouling, even under extreme conditions such as pH 1–14, temperatures up to 80 °C, high salinity, and oily streams containing up to 5% oil. For advanced industrial wastewater treatment applications, the system ensures reliable and consistent performance across challenging effluent streams. Unlike conventional polymer membranes, this solution maintains long-term performance through repeated high-caustic (pH 14+) and chlorine (10,000+ ppm) cleanings. It consistently delivers over 95% flux recovery after aggressive NaOH and NaOCl cleaning, preventing irreversible fouling and reducing replacement frequency. Optimized porosity and geometry allow the membranes to handle heavy oil loads while validated cleaning protocols ensure rapid regeneration and stable long-term operation.The proprietary polymer chemistry and crosslinking techniques that form the basis of the membrane provide a competitive edge and ensure consistent performance. The technology owner seeks collaboration with Institutes of Higher Learning, large industrial players with ongoing water reuse, wastewater, or zero-liquid-discharge initiatives, and engineering, and construction firms with opportunities for R&D collaboration, test-bedding, and licensing.
AI-Powered, Non-Destructive Diagnostic Solution for Plastic Deterioration
Global plastic production now exceeds 350 million tonnes per year, yet less than 15% is recycled. At the same time, regulators and end-users across automotive, electronics, packaging and infrastructure sectors are demanding higher-quality recycled materials and longer service time for plastic-based products. Traditional evaluation methods—relying on elapsed time or destructive testing—cannot accurately capture the complex, use-dependent degradation patterns of plastic materials, particularly the subtle early-stage plastic deterioration that occurs under varying usage environments and environmental stresses. To bridge this gap, the technology owner has developed a novel non-destructive diagnostic platform that combines wide-band optical spectroscopy with a proprietary AI deterioration-diagnosis engine, which is trained on accelerated-aging protocols and real-world usage histories. In just minutes, and without damaging samples or interrupting production, the system delivers high-precision assessment of plastic degradation levels and progression of plastic deterioration, remaining-life prediction, and key material property characterization. This rapid, on-site solution provides critical insights for recycling, refurbishment and preventive maintenance—driving down costs through extended, reliable plastic use and contributing meaningfully to sustainability goals and circular economy initiatives. The technology owner is seeking industrial & business partners in plastic recycling, consumer electronics refurbishment, recycled-plastic manufacturing, and infrastructure maintenance to pilot and co-develop real-world applications.
First Steps in Measuring Your Carbon Footprint
This technology solution empowers organisations to easily calculate and visualise their Scope 1 and Scope 2 carbon emissions by responding to a series of straightforward, user-friendly questions. It provides a powerful and accessible starting point for companies seeking to understand and manage their carbon footprint, enabling them to make informed decisions toward sustainability goals. By simplifying the often complex emissions tracking process, this solution supports businesses of all sizes in taking meaningful first steps on their journey towards environmental responsibility and climate action.  This solution is accessible to all users looking to understand their carbon footprint.
Revolutionizing PGM Recycling: Efficient Recycling of Platinum Group Metals
Platinum group metals (PGMs) are critical raw materials essential in diverse industries, including automotive catalytic converters, jewelry, glassware, petrochemical refining, electronics, and healthcare sectors like pharmaceuticals and dental implants. Primarily sourced through the mining of PGM ores, they constitute about 70% of the global PGM supply, with South Africa and Russia accounting for 85% of this production. This concentration in supply can lead to price gouging and market monopoly. Recycling PGMs from waste not only mitigates the supply shortfall but also reduces environmental impacts compared to mining. However, conventional recycling methods are energy-intensive, requiring temperatures around 1500°C, and involve costly downstream processing to treat waste. Furthermore, the high processing temperatures result in high-value raw materials being burnt and releasing harmful toxins. The technology owner has developed a novel biorecovery method that incorporates and modifies a series of biochemical and biological processes into a streamlined 3-stage process as opposed to the multi-tiered stages of current conventional methods used in industry. It offers the following advantages over the competition: Energy Efficiency: consumes 6x less energy than traditional methods Cost Effective: 3x cheaper in operation cost High Yield: capable of recovering multiple PGM simultaneously with high yield even from low-grade waste Sustainability: support company decarbonization goals by offering a truly green and sustainable recycling manner for spent catalyst
Reducing wasted energy and emissions with smart plug sockets
This technology uses Machine Learning and AI algorithms to identify what appliances get plugged in to a building and when they are wasting energy. Plug Power represents 40% of the energy in a commercial building. Half of this energy is wasted with appliances left on when nobody is in the building. When wasted energy is found the plugs automatically switch off the appliances wasting energy and turn them back on before people return to the building. The technology not only saves energy and carbon emissions but makes buildings safer by detecting and preventing unsafe energy loads as well as reporting on occupancy and enabling behavioural change with occupants. The technology provider is seeking collaboration partners among businesses operating commercial buildings that utilize plug sockets — particularly those with multiple locations and high energy-consuming appliances. Potential partners include, but are not limited to, retail chains, F&B chains, the hospitality industry, healthcare facilities, education and training centres, and fitness and wellness chains.
Air Purification Technology for Energy Efficiency and Indoor Air Quality Enhancement
Facing the dual challenge of high energy consumption and the need for effective air purification in urban environments, this solution optimizes air filtration in HVAC systems. By employing advanced sound wave technology, the specialized emitter agglomerates fine airborne particles, making them easier to capture and significantly reducing the pressure drop across air handling units. This method not only lowers energy usage but also extends filter lifespan, cutting operational costs and maintenance needs. Ideal for building operators and industries that prioritize energy efficiency and superior indoor air quality, such as commercial real estate, hospitals, and manufacturing facilities, this system meets stringent G4 filtration standards and achieves performance levels equivalent to MERV 13 and MERV 14 filters.  The technology presents a cost-effective solution that significantly enhances HVAC performance and air quality, positioning itself as a sustainable investment for facilities dedicated to optimizing operational efficiency and environmental health. It improves motor energy consumption by up to 45%, while also enhancing air quality and reducing operational costs in HVAC systems. The technology owner is actively seeking collaboration partners for research and development, as well as opportunities for test-bedding within the HVAC systems field to enhance indoor air quality.
Vegan Leather: Sustainable, High-Performance Material from Agricultural Waste
The leather industry faces increasing challenges due to its high environmental impact and ethical concerns. Traditional leather production drives deforestation, greenhouse gas emissions, and water pollution, while the tanning process involves toxic chemicals. Synthetic alternatives, often made from PU or PVC, contribute to microplastic pollution and long-term waste. As industries seek sustainable and ethical alternatives, the demand for eco-friendly materials is rising.  This innovation introduces mycelium-based leather, a biodegradable, non-toxic, and low-carbon alternative. Cultivated using agricultural waste as a substrate, it eliminates the need for livestock farming, excessive water use, and harmful chemicals. The result is a high-performance material that mimics the look, feel, and durability of traditional leather while being sustainable and scalable.  Ideal for fashion, footwear, automotive, and upholstery industries, this technology meets the growing demand for eco-friendly and ethical materials. With customizable properties and scalable production, it offers a viable alternative for brands looking to reduce their environmental footprint without compromising on quality or aesthetics.  The technology owner is looking for R&D collaborations and test-bedding partners to develop new products. 
Spectrometry-Based Electronic Nose for Odour Mapping and Analysis
With increasing discoveries of new pollutants being detrimental to human health and the environment, there have been an increasing scrutiny of air quality and industrial emission in urban settings through tighter government regulations. With the increasing importance to detect different combination of analyte concentrations within an area, there is a growing demand for electronic olfactory system. Laboratory multi-analyte analysis method, like gas chromatography and mass spectrometry (GC/MS), provide high accuracy and selectivity but is time consuming, not portable and only provide point sampling. Comparatively, industrial gas sensors, like micro-electromechanical systems (MEMS), are portable and simple but lack the selectivity of chemical substances and do not provide analysis capabilities on-site. The technology owner has leveraged on Field Asymmetric Ion Mobility Spectrometry (FAIMS) with a proprietary odour analysis system built on extensive experimental data to develop a compact, user-friendly spectrometer for real-time multi-analyte detection, measurement and analysis. The solution offers higher accuracy and selectivity than industrial gas sensors while enabling continuous, non-invasive analysis. With its portable formfactor, the solution enables multiple on-site point samplings for odour mappings for value-added visibility and objective insights. The technology owner has completed numerous pilot test locally and overseas from industrial, aromatics and healthcare use-cases and is actively developing for their commercialisation. The technology owner is currently seeking industrial collaborators looking to explore digital olfaction devices for on-site odour mapping and real-time multi-analyte analysis deployment, with a focus on urban odours.