Sustainability Hub

Environment

Environmental technology and innovations play a critical role in driving Singapore's sustainability goals. By advancing waste management to promote a circular economy, ensuring pollution control, safeguarding public health, and building climate resilience, these environmental innovations help create a resource-efficient and climate-resilient nation. 

IPI’s curated selection of cutting-edge environmental technologies presents enterprises with unique co-creation opportunities to address pressing environmental challenges. In line with the Singapore Green Plan 2030, these solutions empower businesses to contribute to a low-carbon, climate-resilient future, while unlocking new avenues for sustainable growth and long-term business success.

With environmental technology and innovation at the forefront in Singapore, businesses can leverage these advancements to enhance their sustainability efforts, meet stringent environmental standards and remain competitive, while contributing to a greener economy. 

Sustainable Clay: Integration of Food Waste With Clay
Clay is a naturally occurring material composed mainly of fine-grained minerals, demonstrating plasticity through a range of water content. Given the low recycling rate of food waste in Singapore (18%), incorporating food waste in existing clay products presents an opportunity to conserve natural resources and develop more sustainable clay materials. This technology involves the development of food waste-incorporated clay, which permits safe biodegradation over time without the use of kiln firing. A selection of food waste is carefully treated and blended into the clay to create sustainable clay with high waste content, high nutrients, great workability, and appropriate shelf-life. Each type of food waste contributes different physical and chemical properties to the clay, affecting its biodegradability and workability. Apart from food waste, a naturally occurring binder is also added to ensure overall biodegradability. By adjusting the formulation of the food waste-incorporated clay, its appearance and other functional properties (such as strength and workability) can be made comparable to conventional clay, with the added benefit of nutrient (calcium, potassium, nitrogen, carbon) leaching capabilities. This creates sustainable, biodegradable clay for various built environment applications. The technology owner is interested in working with companies seeking sustainable clay materials on joint R&D projects, out-licensing and test bedding opportunities .
Solar Powered Portable Water Purification System
Access to clean and safe drinking water is essential for health, yet millions of people worldwide still lack this necessity. According to the World Health Organization (WHO), over 2 billion people globally use drinking water sources contaminated with feces, leading to severe health consequences. Unsafe water, along with inadequate sanitation and hygiene, is estimated to cause 485,000 diarrheal deaths each year. Water purification technologies face significant challenges, especially in decentralized systems lacking the efficiencies of large-scale operations. They often have a substantial carbon footprint due to energy-intensive processes and reliance on chemicals. Existing portable devices primarily use filtration and have a limited lifetime on-site, with little opportunity for cleaning to restore its performance.  Developed by a research team, this technology effectively addresses the above challenges by employing electrochemical methods that generates strong oxidizing agents to kill micro-organisms present in raw water and potentially degrade organic pollutants that conventional portable reactors cannot remove via filtration. Due to its working mechanism, the device is self-cleaning and does not need regeneration. By harnessing solar energy and activated carbon, this chemical-free purification approach is not only environmentally friendly but also perfectly suited for deployment in remote areas, developing countries, and disaster-stricken zones where traditional water treatment infrastructure is lacking. The technology owner is looking for collaborations with local SMEs to co-develop scaled systems and deploy it through disaster relief organizations, government agencies and non-profit organizations in selected developing countries. 
Biodiesel Raw Material from Fried Food Scraps
Cooking oil waste has become a significant environmental problem in recent years. Improper disposal of used cooking oil and fried food scraps can lead to pollution of water sources and the release of harmful greenhouse gases. When poured down into drains, it travels through sewage systems to rivers and oceans, disrupting ecosystems, clogging water treatment plant filters, and complicating water purification processes. Additionally, there are higher costs associated with waste disposal in volume-based plastic garbage bags which are also not environmentally friendly. This technology addresses the above pain points by offering a sustainable solution that recycles discarded fried food scraps into high valued biodiesel raw material, preventing water pollution and sewage pipe blockage when discarded without appropriate measures. This innovation addresses a critical market need by providing a greener alternative to conventional disposal methods, reducing waste disposal costs and the production of high valued biodiesel as an end point.  The technology owner is seeking collaborations with companies in the fields of waste management and biodiesel production for test-bedding and research & development projects aimed at recycling fried food scraps into biodiesel.
Air Purification Technologies for Ensuring Pristine Air Quality on Ships
Maintaining clean air on ships is crucial for the health and well-being of passengers and crew, as well as for the proper functioning of sensitive equipment. Due to the structural specificity of ships and higher reliance on mechanical air conditioning than natural ventilation, addressing indoor air quality issues is particularly important. Advanced air purification solutions would be able to effectively address a range of airborne contaminants, including particulate matter, volatile organic compounds (VOCs), and biological pollutants, ensuring a safer and more pleasant environment on board. A Korean startup has developed an air sterilisation and purification system tailored specifically to the challenges of maritime environments that excels in delivering clean, safe, and compliant air quality solutions. They enhance health and safety, optimise operational efficiency, and contribute to a better overall experience for passengers and crew, while also meeting regulatory requirements and supporting environmental sustainability. The company is seeking collaborators from the maritime and built environment sectors, as well as HVAC and IoT companies, to expand their applications and explore integration of their technologies into existing HVAC systems.
AI-Based Material Sorting Robot For Plastic Recycling
Plastic recycling plays a crucial role in achieving a sustainable future. Proper sorting of waste plastics is essential, especially in mixed waste streams where various materials are combined. Some types of plastic are not recyclable, and even recyclable ones can be difficult to separate efficiently. Sorting mixed waste streams into different recyclable categories can be time-consuming and labour-intensive, especially for materials with similar appearances, such as different types of plastic. To address these challenges, this technology aims to automate and accurately sort plastic waste, reducing the reliance on manual processing and improving overall plastic recycling efficiency. The technology on offer is a patented artificial intelligence (AI) based material sorting robot that sorts plastic waste accurately. Comprising of a camera, recognition unit and analysis unit, each unit of this system can continuously identify and sort waste plastics and generate information in real time. Blower vacuum adsorption devices are placed within each unit to pick waste in a speedy and accurate manner. This technology effectively reduces the issue of labour shortage in the waste sector, lowers operating costs and contamination rates that hinders recycling efforts. Currently, the technology has been deployed successfully in South Korea to sort polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP). The technology owner is interested to work with Singapore waste collection companies on joint development projects to testbed this technology and improve plastic recycling rates.
Durable and Cost-Effective Anti-Fouling Coating
Anti-fouling coatings have garnered significant attention due to the increasing demand for durable, low-maintenance, and aesthetically pleasing surfaces in both residential and commercial spaces. These coatings help maintain cleanliness and appearance, reduce cleaning frequency and effort, and offer substantial cost savings in maintenance. However, balancing the performance and cost of anti-fouling coatings, particularly in achieving both oil repellence and dust resistance, remains a challenge. There is also a growing emphasis on developing stain-repellent coatings that provide long-lasting protection against abrasion. The technology offers a special fluororesin-based functional coating with excellent water and oil repellence and dust resistance. This thin, transparent and durable coating can be applied to metals, plastics, ceramics and various other surfaces. It effectively reduces the accumulation of oil and stain build-up on the surface, prolonging the life span of home appliances and reducing maintenance frequency. With these superior properties, such coatings have great potential for applications across electronics, household appliances, and automotive applications, enhancing product performance and durability while improving user convenience and hygiene.  The technology owner is seeking joint R&D collaboration and partnership with companies interested in integrating this coating into their products and applications.
Carbon Mineralization Technology for Upcycling of Industrial Solid Waste
With rising concerns about carbon emissions, Carbon Capture, Utilization and Storage (CCUS) plays a crucial role in combating climate change. CCUS helps reduce emissions by capturing carbon from flue gas, removing carbon from the atmosphere, and transforming captured carbon into value-added products. However, conventional CCUS technologies often involved high energy consumption and operational expenses. Current carbon mineralization processes face challenges such as slow reaction rates, limited scalability, and high associated costs. To address these challenges, the technology owner has developed an economically viable carbon mineralization technology that integrates carbon fixation and the reuse of industrial solid wastes in an integrated manner. This technology targets both carbon utilization and long-term carbon storage. It focuses on using alkaline industrial solid wastes, such as steel slag, fly ash, and cement waste, which are rich in calcium and magnesium oxides, to efficiently sequester CO2. The process involves leaching calcium and magnesium ions from slag and precipitating them as carbonates for various applications. This modular technology is scalable and adaptable to different waste materials, promising substantial carbon reduction and transforming industrial waste into valuable resources. Implementing this technology allows steel, cement and chemical companies to tackle high carbon emissions and waste disposal issues simultaneously. The final product, with carbon-negative properties, helps downstream clients reduce the carbon footprint of their products, such as plastic, paper, rubber tires, paint and cement.  The technology owner is seeking collaboration with industrial partners, especially industrial waste producers, high carbon emission plants, cement companies using post-carbonation slag, and manufacturers of paper, plastic, and rubber.
Eco-Friendly Water-Based Air Purification
Controlling both outdoor and indoor air pollution is crucial for protecting human health and the environment. Outdoor air pollution from industrial emissions and vehicle exhaust contributes to respiratory and cardiovascular diseases, global warming, and environmental degradation. Indoor air pollution can also cause chronic respiratory conditions and other health issues. According to the World Health Organization (WHO), outdoor air pollution causes approximately 4.2 million premature deaths annually, while indoor air pollution accounts for around 3.8 million premature deaths each year. Traditionally, wet scrubbers are used to reduce air pollution, ensuring regulatory compliance and protecting human health. However, they have drawbacks such as scaling, fouling, inefficient pollutant removal, and generating solid waste. These issues lead to frequent maintenance, high operational costs, and environmental pollution. This technology addresses these pain points by utilizing an array of water jets without the need for packing materials. This innovative solution offers more efficient pollutant removal, reduced maintenance, a compact design, and lower energy consumption, effectively solving the problems associated with traditional wet scrubbers. The technology owner is seeking collaborations with companies in the chemical/ pharmaceutical/ steel manufacturing sector for test-bedding and research and development (R&D) projects that require an eco-friendly scrubber.
Capitalising On Spent Coffee Grounds (SCG)
Only 20% of actual coffee is extracted from beans to produce coffee in its beverage form, leaving the remaining 80% (six million tons annually) deemed as spent coffee grounds (SCG) to be disposed or used in landfills or as non-food product components to make fertilisers, furniture, deodorisers or skin care products. A technology was created to counteract SCG wastage and valorise it for human consumption. This particular invention comprises of methodologies to create two types of ingredients using leftover SCG - oil-grind and water-grind processed SCG. A simple, reproducible method of conching is employed to convert leftover SCG into smooth pastes, where specific conching parameters help refine the SCG to an acceptable particle size, eliminating grittiness in numerous valorised products similar to SCG. The product utilises common ingredients like oil and water to conche SCG with improved taste and textural properties. The shelf stability and nutritional composition (including caffeine) of the ingredients were also validated to ensure the food possessed good sensorial properties and are scale up ready. This technology increases SCG’s potential use as a versatile ingredient in different food applications. The technology provider is seeking off-takers from food manufacturers, food services industry, companies interested to valorise side streams to turn SCG into edible compounds.