Tech Bundle

Green Energy and Emissions Management

Reducing greenhouse gas emissions is vital for controlling global temperature rise and curbing climate change. The urgency of this initiative has catalyse the development of green energy innovation solutions across various industries.

Green energy innovation taps on technologies, processes and strategies that utilise sustainable and renewable energy sources to power a more sustainable future. Carbon capture innovation is one of the cutting-edge approaches technologies that aim to reduce greenhouse gas (GHG) emissions associated with energy production and consumption.

From green energy alternatives to carbon capture, utilisation, and storage (CCUS), emissions tracking, and reduction, these curated technologies provide many opportunities for enterprises in Singapore to capitalise by, means of co-development and co-creation to develop products and services across various fields for a sustainable and resilient future.

Solar Reflective Aerogel Paint
Reducing heat transfer across surfaces within built environments and transportation units is critical for optimising energy efficiency in thermal comfort systems and mitigating associated costs and carbon emissions. Implementing measures to minimise heat transfer help maintain liveable thermal conditions and promote environmental sustainability. Some of the efficient methods for reducing heat transfer from the surrounding environment include reflecting solar radiation and providing thermal insulation to minimise heat conduction through surfaces. The technology offered here is a nano-engineered aerogel paint designed to reduce heat transfer across surfaces in the built environment. Unlike traditional solar reflectance paint that merely reflects sunlight, this paint actively minimises solar heat absorption, reducing the reliance on cooling and air conditioning systems and resulting in significant energy savings. Additionally, the paint provides excellent weather resistance and reduces maintenance costs by shielding against ultraviolet (UV) and infrared (IR) emissions, moisture, algae, and fungal growth. Its superior coverage capabilities of up to 3 square meter per liter per coat further contribute to cost savings and ensure long-lasting protection for various surfaces. With a proven track record in increasing energy efficiency for containerised offices and refrigeration trucks, the technology owner is now seeking to expand into other applications through on-site testbedding and performance trials. These include warehouses and building rooftop insulation, enhancing data center energy efficiency, and numerous other potential applications.
Capitalising On Spent Coffee Grounds (SCG)
Only 20% of actual coffee is extracted from beans to produce coffee in its beverage form, leaving the remaining 80% (six million tons annually) deemed as spent coffee grounds (SCG) to be disposed or used in landfills or as non-food product components to make fertilisers, furniture, deodorisers or skin care products. A technology was created to counteract SCG wastage and valorise it for human consumption. This particular invention comprises of methodologies to create two types of ingredients using leftover SCG - oil-grind and water-grind processed SCG. A simple, reproducible method of conching is employed to convert leftover SCG into smooth pastes, where specific conching parameters help refine the SCG to an acceptable particle size, eliminating grittiness in numerous valorised products similar to SCG. The product utilises common ingredients like oil and water to conche SCG with improved taste and textural properties. The shelf stability and nutritional composition (including caffeine) of the ingredients were also validated to ensure the food possessed good sensorial properties and are scale up ready. This technology increases SCG’s potential use as a versatile ingredient in different food applications. The technology provider is seeking off-takers from food manufacturers, food services industry, companies interested to valorise side streams to turn SCG into edible compounds.
Vanadium Redox Flow Battery for Enhanced Energy Storage Solution
Today, the cost of energy generated by renewable sources is less than conventional energy. However, current energy storage solutions (e.g. Lithium-ion battery etc.) used to harness energy from renewables are expensive, unsafe and unreliable which has severely impeded the adoption and development of such renewable sources. Hence, there is a need for a cost efficient, safe, environmentally friendly and reliable energy storage system (ESS) to address these existing issues. This technology offer is a vanadium redox flow battery (VRFB) as a promising ESS. Unlike lithium-ion and lead acid batteries, VRFB has the flexibility to design and customise its power and energy density independently. This results in enhanced performance in terms of round-trip efficiency, energy density and thermal window as well as lowered levelised cost of storage when benchmarket against lithium-ion battery based ESS for long discharge duration. The VRFB also uses a unique stack design and an organic additive mixture on the electrolyte that improves the thermal stability and allows for 25% increase in energy efficiency when compared to other VRFB solutions.It also reduces safety risks related to over-charging, discharging and thermal runaways. This VRFB ESS is stable for up to 25 years with no electrolyte degradation and is made with environemtally friendly materials. The technology owner is seeking partner and collaborators especially those in renewable energy, large scale utility and microgrid projects to test bed their technology.
AI-Based Electrical Asset Monitoring and Data Platform
The proprietary solution is a data acquisition and analytics system that employs non-intrusive clip-on current transformers which are easily installed at electrical distribution boards. This enables AI algorithms to detect subtle changes and patterns in the electrical signature of each connected asset or device. Monitoring electrical assets has traditionally been complex and costly, requiring multiple sensors and expensive systems. This has led to widespread under-monitoring,  resulting in expensive maintenance and significant energy inefficiencies. The solution extracts a proprietary set of deep energy data from electrical devices, assets, and machines, and can be easily installed on both new and existing electrical assets or building infrastructure. It offers real-time monitoring and reporting on important metrics such as real-time power usage effectiveness (PUE) and enables automation of sustainability reporting. The technology offers an industry-changing solution: a non-intrusive cost efficient AI-powered monitoring system that is easy to install. It generates a proprietary data set that fuels machine learning algorithms, enhancing efficiency and reducing total cost of ownership for all connected assets. The technology owner is seeking test-bedding partnerships with real estate businesses, data centre companies or service providers, facility management businesses.
Carbon Dioxide Removing Additive for Textiles
As rapid global warming accelerates, the need for increased sustainability efforts has become a critical societal challenge. While individual lifestyle changes can contribute, their impact remains limited without broader systemic shifts. This places significant pressure on industries, particularly the fashion & textiles sector, a major contributor to climate change responsible for 10% of global greenhouse gas emissions. Decarbonising this industry is therefore crucial to achieving a sustainable future. This technology enables textiles and fabrics to remove carbon dioxide (CO2) from air. The patent-pending material functionalises textiles to capture CO2 present in air which is sequestered into a harmless mineral during the laundering process. The resultant mineral which is environmentally safe is then washed away, leaving the textile recharged to remove CO2 once more. With this technology, decarbonisation of the textiles industry can be achieved through the decentralised action of consumers utlising functionalised carbon removing products. The technology owner is interested in working with interested companies in the fashion industry value chain to test-bed this new material for carbon removing apparel and fabrics.
Advanced Electrodes and Electrolysers for Cost-Effective Green Hydrogen Production
As a clean burning fuel, green hydrogen plays a critical role in achieving net zero emissions. A major challenge is the high cost of the electrolyser due to inefficient production and the use of precious metals. Innovation in green hydrogen is urgently required to lower its cost and bring it to parity with conventional fossil fuel based grey hydrogen. A Singapore-based startup has developed a proprietary super-alloy nano-structured material using earth's abundant and cost-effective materials for use in all major electrolyser technologies. These components achieve dramatically higher water-splitting capability and anti-corrosion properties versus commercially available solutions, while ensuring electrode durability, increasing energy efficiency and reducing overall cost. The startup is capable of supporting the manufacturing of core hardware components for electrolyser cells, stacks, and systems, enabling end users to produce the most affordable green hydrogen. The startup is seeking partnerships with manufacturers (OEMs) of alkaline (AWE), proton exchange membrane (PEM) electrolysers and leading hydrogen users, including energy majors, utilities, and industrial gas companies, to deploy modular stand-alone anion exchange membrane (AEM) electrolyser systems for pilot projects or for test-bedding at industrial scale.
Safe and Rechargeable Water-Based Battery
To achieve a net-zero carbon emission goal, energy derived from fossil fuels are replaced with green renewables such as solar, wind, etc. However, these renewable energies are intermittent in nature and therefore requires a reliable energy storage system to store these energies. Today, batteries based on lithium-ion and lead-acid are widely used as the go-to energy storage system. However, there are fire safety concerns for the conventional lithium-ion batteries due to its highly volatile and flammable electrolyte while the acidic electrolyte and carcinogenic lead used in lead-acid posed threat to both human and environmental health. Therefore, there is a need for a new safe and environmentally friendly battery system. This technology offer is a safe and rechargeable water-based battery using a unique green electrolyte formulation (close to neutral pH). Owing to the widened electrochemical stability window and high ionic conductivity of the proposed electrolyte formulation, it enables superior electrochemical performance of the electrode materials used in the batteries, suited towards large-scale energy storage applications.
Eco-friendly Direct Conversion of Biogas into Liquid Fuels
Liquid fuels from biogas are a promising source of renewable and clean energy as they give a lower emission of sulphur dioxide, nitrogen oxide, and soot than conventional fossil fuels. They are sustainable and economically viable as they can be obtained from agricultural waste. However, transforming biogas into a high-value liquid fuel equivalent to diesel or gasoline requires a costly two-step process.  The technology developer has developed a novel enhanced capsule catalysts with unique core-shell structures that enable the production of high value-added liquid fuels from biogas in a single step with only one reactor. These capsule catalysts directly convert synthetic gas (syngas) into liquid fuels, which have improved petrol-like qualities. Therefore, these liquid fuels can be used either as diesel or gasoline substitutes without any modification to engines and existing refuelling facilities. The technology developer seeks companies looking for renewable and clean energy through the gas-to-liquid (GTL) technology to license and commercialise this technology. 
Low-energy Carbon Dioxide-free Hydrogen Production
The potential of green hydrogen to plug the intermittency of solar and wind whilst burning like natural gas and serving as feedstock in industrial chemical processes has attracted the interest of industry, governments and investors. From oil and gas players, utilities, industries from steel to fertilisers and more, green hydrogen is regarded as the best bet for harmonising the intermittency of renewables.   Green hydrogen is produced through water electrolysis, a process that separates water into hydrogen and oxygen, using electricity generated from renewable sources. Today, it accounts for just 0.1% of global hydrogen production according to the World Economic Forum. The main disadvantage of green hydrogen production via water electrolysis is (1) its high energy consumption of more than 50 kWh per kg and the need for large land areas and (2) the competition of usage for water it creates.   The proposed hydrogen production technology is based on the decomposition of methane (CH4) molecule in oxygen-free environment by low energy microwave plasma. Unlike electrolysis, this process does not produce CO2 as it decomposes CH4 directly into gaseous hydrogen and solid carbon, both are industrially valuable products. Compared to water electrolysis, this process saves up to 5 times the energy required to produce hydrogen from methane, at competitive costs. The process can be installed on-site, at the end of the gas infrastructure, reducing the need to invest in a new H2 infrastructure. The fact that, coupled with biomethane, the technology is CO2 negative, representing an indirect air capture solution is another major advantage.   The technology owner is seeking OEM partners in Singapore (1) to co-develop complete solutions integrating the proposed technology for specific applications or (2) integrate the technology into industrial demonstration sites.