
Bioplastics have emerged as a sustainable alternative to conventional petroleum-based plastics, offering biodegradability and reduced carbon footprint. However, their use in high-performance applications remains limited because of inherent material weaknesses. A key challenge is their poor barrier properties, particularly against water vapour and gases such as oxygen and carbon dioxide. This limitation prevents bioplastics from being widely adopted in packaging applications that demand strong protective qualities, such as food products, pharmaceuticals, and sensitive electronic components. In most cases, bioplastics are restricted to low-demand items like disposable bags or cutlery, where barrier performance is not critical.
This technology addresses the key challenge of poor barrier properties by introducing a plant-waste-derived additive that enhances barrier properties of bioplastics. Incorporated directly during melt processing, the additive reduces the water vapour transmission rate (WVTR), enabling bioplastics to provide effective moisture protection. Because the additive is derived from upcycling of plant waste, it reinforces the sustainability narrative while aligning with circular economy principles. This technology also functions as a drop-in solution compatible with existing manufacturing processes, allowing packaging producers to adopt the technology without costly modifications.
The technology owner is interested in co-development R&D opportunities and out-licensing of the developed IP with companies developing sustainable bioplastic products with enhanced barrier properties.
This technology is an eco-friendly additive that enhances barrier performance in bioplastics.
Key features of this additive include:
The additive has been successfully tested with PBAT to decrease its WVTR.