innovation marketplace

TECHINNOVATION TECH OFFERS

Discover new technologies by our partners

TechInnovation showcases hundreds of the latest technologies and innovations from partners in Singapore and beyond. Over three days, the event combines content-rich conferences, exhibitions, and business networking, enabling enterprises to discover emerging technologies and market trends, connect across borders to navigate business and regulatory challenges, and collaborate for impact through co-innovation.

Enterprises interested in these technology offers can register at www.techinnovation.com.sg/event/2025 to meet TechInnovation technology providers and arrange 1-1 business meetings.

Sunscreen Formulation for Tropical Climate
In tropical regions, consumers face intense UV radiation year-round, along with high temperatures and humidity that accelerate skin aging, hyperpigmentation, and UV-induced damage. This creates a strong demand for sunscreens that provide reliable, broad-spectrum protection while remaining lightweight, non-greasy, and comfortable for daily wear in humid environments. However, many traditional formulations leave behind a heavy residue, cause irritation, gives undesirable sensory properties such as greasiness and white cast, or degrade under sun exposure, falling short of consumer needs in tropical climates. To address this, the invention introduces an encapsulation technology for UV filters designed to enhance the stability, efficacy, and sensory qualities of sunscreen and skincare formulations. By leveraging a low-energy encapsulation process, this method enables effective delivery of both organic and inorganic UV filters without the need for synthetic surfactants and silicones. The suncare formulation with encapsulated UV filters ensures even dispersion, reduced agglomeration, and enhanced transparency, which make formulations more effective, cosmetically elegant, and suitable for tropical climate. This low-energy, surfactant-free, and cost-efficient technology is highly accessible to small and medium-sized enterprises (SMEs) seeking to develop next-generation suncare products that meet evolving regulatory standards like ISO 23675:2024 and growing consumer demand for multifunctional, lightweight, silicone-free and sustainable skincare. Ideal collaboration partners include: Cosmetic and personal care brands (especially SMEs) Cosmetic OEM/ODM manufacturers looking to develop sunscreen Medical skincare and post-treatment care companies Personal care formulation labs exploring surfactant-free or sustainable innovation Dermatological product developers seeking photostable and mild UV protection solutions Academic institutions focused on delivery systems or bio-compatible materials Testing laboratories supporting SPF, safety, and efficacy validations
AI-Powered Circular Economy Platform for Smart Recycling
Due to mixed collection and inadequate sorting, many recyclables cannot be effectively recovered and end up being landfilled or incinerated. While reverse vending machines address some of these issues, these solutions are often costly, provide limited brand-level data insights, and deliver a suboptimal consumer experience. This technology aims to significantly improve recycling rates by overcoming these limitations. The technology on offer is an AI- and IT-enabled circular economy platform that integrates smart collection bots, digital product passports, and cloud-based traceability to achieve precise material separation and full resource transparency. Cost-effective and fully customizable, this technology enables the efficient management of diverse recyclable streams while ensuring a stable supply of high-quality recycled raw materials. This scalable platform is well-suited for local governments, retailers, and corporations seeking to strengthen recycling infrastructure and advance environmental goals. The technology owner is seeking co-development and test-bedding opportunities in Singapore to pilot its smart recycling and traceability platform, supporting the transition towards a circular economy.
Optimisation of Shrimp (L. Vannamei) Feed with Underutilised Okara
In Singapore, more than 30,000kg of okara are generated from soya milk and tofu production. Due to the high amount of insoluble dietary fibre and a unique, poignant smell of okara, it is often discarded as a waste product. Despite okara's low palatability, it is rich in nutrients such as protein, fibre and isoflavones. By replacing fishmeal with okara, an local higher institute of learning has developed a nutritious yet cost-effective formulation in the feed of L. Vannamei shrimps. Besides reduced overall cost of shrimp meals, the conversion from okara to shrimp meal significantly reduces the amount of organic waste to landfills and promotes economic viability, giving okara a second life. This circular economy model creates a symbiotic relationship between two industries. The formulation can potentially be adapted and customised for other aquatic species. The technology provider is seeking to work with shrimp farmers to run larger trials.
Autocleaning of Earwax from Hearing Aid Receivers and Earmolds for Optimal Sound Clarity
This invention addresses a major yet often overlooked issue in hearing healthcare: earwax buildup, the leading cause of hearing device malfunction and poor sound clarity. Earwax clogs receivers and earmolds, reducing sound quality, causing discomfort, and leading to costly repairs or replacements. The problem is particularly acute among elderly users, who may struggle with manual dexterity and find it difficult to clean devices properly, as well as among caregivers, who often lack reliable tools for hygienic cleaning. Current solutions-such as manual brushes or basic filters-are largely ineffective against hardened or internal wax. Moreover, some automated systems reuse cleaning fluids, and their performance can vary depending on the degree of wax accumulation, device design, or user maintenance. This technology introduces an automated cleaning system that employs a multi-step process - including fluid cleaning, brushing or shaking, rinsing, and drying-combined with single-use solution and UVC disinfection to ensure safe, hygienic, and thorough cleaning. It restores near-original sound clarity, reduces the need for clinic visits, prevents device damage, and supports better ear health. This technology offers improved convenience and longer device durability for hearing aid users, caregivers, audiology clinics, hearing aid service centers, and device manufacturers. To further advance and scale adoption, the technology owner is seeking R&D collaborators, application partners such as nursing homes for real-world validation, B2C partners for commercialization and bundling, and adopters beyond healthcare who can apply it as a cleaning platform or service.
Intelligent Robot for Food and Beverage Service
The key challenges in beverage service include labor shortages, 24/7 demand, and strict hygiene requirements. Workforce Singapore has reported a persistent shortage of workers for lower-skilled roles in the food services sector, increasing manpower costs and limiting operating capacity. At the same time, consumer expectations in Singapore increasingly reflect a “24-hour service culture,” with businesses expected to provide convenience beyond traditional operating hours.   This technology is an intelligent foodtech robot that automates beverage preparation, order management, and customer interaction, delivering safe, consistent, high-quality drinks at any time with minimal human input. Its system can detect spills and reroute to prevent disruption, and its imitation learning capability allows it to acquire new workflows and recipes from virtual demonstrations by human, supporting adaptability and productivity as service requirements evolve.  
Formulation and Optimisation of Fish (O. niloticus) Feed from Food Waste Protein Source
The aquaculture industry is facing rising costs of conventional feed. Premium protein sources such as fishmeal and fish oil are highly price-volatile due to fluctuating supply and demand, and reliance on imported feed further increases costs. Another key challenge is the growing volume of food waste. A survey of local food processing companies conducted between August 2022 and June 2023 identified approximately 174,300 tonnes of homogeneous food waste, highlighting the scale of the problem.  This technology offers a sustainable aquafeed solution by converting by-products from soy sauce production, fish processing, and bread waste into nutritionally balanced feed for tilapia (O. niloticus), maintaining optimal growth performance while reducing dependency on conventional, expensive feed ingredients. 
Cloud Based Business Negotiation Support System
Given the importance of English as the international language of business, many Asian professionals and workforces still face a significant proficiency gap compared to their Western counterparts. They often encounter difficulties in three key areas: 1) understanding technical nuances, 2) drafting documents such as proposals and agreements, and 3) comprehending the diverse range of English accents found in regions like Korea, China, Japan, India, and Singapore. To address these challenges, our technology offers an e-learning platform that provides individuals and teams with a structured approach to complex business negotiations. It features standardized templates and conversational expressions to guide users effectively. This solution tackles common pain points, including inconsistent preparation, inadequate documentation, and a lack of analytical tools, which often result in suboptimal agreements. The system delivers step-by-step workflows for identifying stakeholders, defining negotiation objectives, evaluating leverage, and formulating strategies. It incorporates analytical modules for SWOT analysis, Position/Interest (P/I) analysis, Zone of Possible Agreement (ZOPA) estimation, and the development of alternative options. By integrating scenario-based logic with standardized templates, the platform empowers users to enhance their negotiation preparation, ensure consistent decision-making, and track outcomes effectively. The primary target adopters include corporate procurement teams, business development units, IP licensing managers, and international traders who are committed to building advanced negotiation skills.
Temperature Modifying Induction Curing Additives
Manufacturing with plastics, particularly thermoset and thermoplastic resins, has long been constrained by inefficient and energy-intensive heating methods. Current practices rely on large ovens, autoclaves, or surface heating techniques using gas or electric conduction. These approaches not only consume significant energy but also require prolonged processing times and manual interventions, limiting scalability and automation. This technology bridges induction heating into plastics for the first time.  This creates opportunities for automated, energy efficient manufacturing of thermoset (epoxy/urethane) or thermoplastic resins not possible through other surface heating methods. This disruptive manufacturing technology allows volumetric heating of plastic parts required in automotive, sports, and green energy sectors. Non-contact, volumetric heating occurs through incorporation of specially designed ceramic particle additives. The additives convert magnetic fields to heat for activation of adhesives, coatings, or melting of thermoplastics. This technology replaces inefficient fabrication methods such as energy intensive ovens, autoclaves, and surface gas/electric conduction-based heating. Induction provides remote activation, real-time feedback, and external digital manipulation for a new paradigm of assembly design intents. This innovative transformation removes laborious manufacturing methods and aligns with current goals of energy efficiency and long-term sustainability.  The technology owner is actively seeking R&D collaborations, licensing partnerships, and IP acquisition opportunities with manufacturing companies in adhesives, sporting goods, and automotive manufacturing.
Scalable and Cost-Efficient Next-Gen L-PGA Biopolymer
The growing challenge of plastic waste and non-biodegradable absorbent materials is driving demand for bio-based alternatives that deliver performance without utilisation of petrochemicals. Poly-γ-L-glutamic acid (L-PGA) stands out as a biodegradable, biocompatible biopolymer with exceptional water retention and film-forming properties, making it highly relevant to applications requiring such functionalities. Commercial adoption has been limited as most commercial PGA is DL-PGA (a racemic polymer with lower stereoregularity and less predictable chemistry) while the preferred L-PGA grade remains scarce and costly under the single supplier archaea-based production route. This technology offers a cost-efficient and scalable platform for L-PGA production. Using proprietary microbial strains, it can produce consistent, ultra-high molecular weight L-PGA with stable quality and stereoregular purity. The resulting stereoregular L isomer material enables early adoption in cosmetics/personal care and medical materials, with the potential to expand into bio-based superabsorbent polymers (SAPs) and bioplastics as production capacity increases. To accelerate market adoption and tailor application-specific L-PGA grades, the technology owner seeks co-development and scale-up partners for this L-PGA technology (current readiness is at bench-scale, with next steps focused on jar-bioreactor scale-up and standardized testing).